Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prompting or Fine-tuning? Exploring Large Language Models for Causal Graph Validation (2406.16899v2)

Published 29 May 2024 in cs.CL and cs.AI

Abstract: This study explores the capability of LLMs to evaluate causality in causal graphs generated by conventional statistical causal discovery methods-a task traditionally reliant on manual assessment by human subject matter experts. To bridge this gap in causality assessment, LLMs are employed to evaluate the causal relationships by determining whether a causal connection between variable pairs can be inferred from textual context. Our study compares two approaches: (1) prompting-based method for zero-shot and few-shot causal inference and, (2) fine-tuning LLMs for the causal relation prediction task. While prompt-based LLMs have demonstrated versatility across various NLP tasks, our experiments on biomedical and general-domain datasets show that fine-tuned models consistently outperform them, achieving up to a 20.5-point improvement in F1 score-even when using smaller-parameter LLMs. These findings provide valuable insights into the strengths and limitations of both approaches for causal graph evaluation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com