Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Segmentation for Vocal Tract Modeling (2406.15754v1)

Published 22 Jun 2024 in cs.CV, cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Accurate modeling of the vocal tract is necessary to construct articulatory representations for interpretable speech processing and linguistics. However, vocal tract modeling is challenging because many internal articulators are occluded from external motion capture technologies. Real-time magnetic resonance imaging (RT-MRI) allows measuring precise movements of internal articulators during speech, but annotated datasets of MRI are limited in size due to time-consuming and computationally expensive labeling methods. We first present a deep labeling strategy for the RT-MRI video using a vision-only segmentation approach. We then introduce a multimodal algorithm using audio to improve segmentation of vocal articulators. Together, we set a new benchmark for vocal tract modeling in MRI video segmentation and use this to release labels for a 75-speaker RT-MRI dataset, increasing the amount of labeled public RT-MRI data of the vocal tract by over a factor of 9. The code and dataset labels can be found at \url{rishiraij.github.io/multimodal-mri-avatar/}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com