Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Memory Contention and I/O Congestion for Disk-based GNN Training (2406.13984v1)

Published 20 Jun 2024 in cs.DC and cs.LG

Abstract: Graph neural networks (GNNs) gain wide popularity. Large graphs with high-dimensional features become common and training GNNs on them is non-trivial on an ordinary machine. Given a gigantic graph, even sample-based GNN training cannot work efficiently, since it is difficult to keep the graph's entire data in memory during the training process. Leveraging a solid-state drive (SSD) or other storage devices to extend the memory space has been studied in training GNNs. Memory and I/Os are hence critical for effectual disk-based training. We find that state-of-the-art (SoTA) disk-based GNN training systems severely suffer from issues like the memory contention between a graph's topological and feature data, and severe I/O congestion upon loading data from SSD for training. We accordingly develop GNNDrive. GNNDrive 1) minimizes the memory footprint with holistic buffer management across sampling and extracting, and 2) avoids I/O congestion through a strategy of asynchronous feature extraction. It also avoids costly data preparation on the critical path and makes the most of software and hardware resources. Experiments show that GNNDrive achieves superior performance. For example, when training with the Papers100M dataset and GraphSAGE model, GNNDrive is faster than SoTA PyG+, Ginex, and MariusGNN by 16.9x, 2.6x, and 2.7x, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.