Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural Networks (2202.02365v2)

Published 4 Feb 2022 in cs.LG and cs.DB

Abstract: We study training of Graph Neural Networks (GNNs) for large-scale graphs. We revisit the premise of using distributed training for billion-scale graphs and show that for graphs that fit in main memory or the SSD of a single machine, out-of-core pipelined training with a single GPU can outperform state-of-the-art (SoTA) multi-GPU solutions. We introduce MariusGNN, the first system that utilizes the entire storage hierarchy -- including disk -- for GNN training. MariusGNN introduces a series of data organization and algorithmic contributions that 1) minimize the end-to-end time required for training and 2) ensure that models learned with disk-based training exhibit accuracy similar to those fully trained in memory. We evaluate MariusGNN against SoTA systems for learning GNN models and find that single-GPU training in MariusGNN achieves the same level of accuracy up to 8x faster than multi-GPU training in these systems, thus, introducing an order of magnitude monetary cost reduction. MariusGNN is open-sourced at www.marius-project.org.

Citations (19)

Summary

We haven't generated a summary for this paper yet.