Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of finite time blow-up in Keller-Segel system (2312.01475v1)

Published 3 Dec 2023 in math.AP

Abstract: Perhaps the most classical diffusion model for chemotaxis is the Keller-Segel system $\begin{equation} \begin{cases} u_{t} =\Delta u - \nabla \cdot(u \nabla v) \ \ \ \text{in } \mathbb{R}2\times(0,T),\[5pt] v = (-\Delta_{\mathbb{R}2}){-1} u := \displaystyle\frac {1}{2\pi} \displaystyle\int_{\mathbb{R}2} \log \frac {1}{|x-z|}u(z,t) dz, \ \ \ \ \ \ \ \ \ (\star)\[5pt] u(\cdot ,0) = u_{0}{\star} \ge 0 \ \ \ \text{in } \mathbb{R}2. \end{cases} \end{equation}$ We show that there exists $\varepsilon>0$ such that for any $m$ satisfying $8\pi<m\le 8\pi+\varepsilon$ and any $k$ given points $q_{1},...,q_{k}$ in $\mathbb{R}{2}$ there is an initial data $u_0*$ of $(\star)$ for which the solution $u(x,t)$ blows-up in finite time as $t\to T$ with the approximate profile $$u(x,t)=\sum_{j=1}{k}\frac{1}{\lambda_{j}{2}(t)}U\left(\frac{x-\xi_{j}(t)}{\lambda_{j}(t)}\right)(1+o(1)), U(y)=\frac{8}{(1+|y|{2}){2}},$$ with $\lambda_{j}(t) \approx 2e{-\frac{\gamma+2}{2}}\sqrt{T-t}e{-\sqrt{\frac{|\ln(T-t)|}{2}}} $ where $\gamma=0.57721...$ is the Euler-Mascheroni constant, $\xi_{j}(t)\to q_{j}\in \mathbb{R}{2}$ and such that $\int_{\mathbb{R}2}u(x,t)dx=km.$ This construction generalizes the existence result of the stable blow-up dynamics recently proved in \cite{CGMN1,CGMN2}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.