Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Exact complex mobility edges and flagellate spectra for non-Hermitian quasicrystals with exponential hoppings (2406.10769v1)

Published 16 Jun 2024 in cond-mat.dis-nn

Abstract: We propose a class of general non-Hermitian quasiperiodic lattice models with exponential hoppings and analytically determine the genuine complex mobility edges by solving its dual counterpart exactly utilizing Avila's global theory. Our analytical formula unveils that the complex mobility edges usually form a loop structure in the complex energy plane. By shifting the eigenenergy a constant $t$, the complex mobility edges of the family of models with different hopping parameter $t$ can be described by a unified formula, formally independent of $t$. By scanning the hopping parameter, we demonstrate the existence of a type of intriguing flagellate-like spectra in complex energy plane, in which the localized states and extended states are well separated by the complex mobility edges. Our result provides a firm ground for understanding the complex mobility edges in non-Hermitian quasiperiodic lattices.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.