Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and approximation of elliptic problems with Uhlenbeck structure in convex polytopes (2406.10762v1)

Published 16 Jun 2024 in math.AP, cs.NA, and math.NA

Abstract: We prove the well posedness in weighted Sobolev spaces of certain linear and nonlinear elliptic boundary value problems posed on convex domains and under singular forcing. It is assumed that the weights belong to the Muckenhoupt class $A_p$ with $p \in (1,\infty$). We also propose and analyze a convergent finite element discretization for the nonlinear elliptic boundary value problems mentioned above. As an instrumental result, we prove that the discretization of certain linear problems are well posed in weighted spaces.

Summary

We haven't generated a summary for this paper yet.