Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalized FGM dependence: Geometrical representation and convex bounds on sums (2406.10648v2)

Published 15 Jun 2024 in q-fin.MF, math.ST, and stat.TH

Abstract: Building on the one-to-one relationship between generalized FGM copulas and multivariate Bernoulli distributions, we prove that the class of multivariate distributions with generalized FGM copulas is a convex polytope. Therefore, we find sharp bounds in this class for many aggregate risk measures, such as value-at-risk, expected shortfall, and entropic risk measure, by enumerating their values on the extremal points of the convex polytope. This is infeasible in high dimensions. We overcome this limitation by considering the aggregation of identically distributed risks with generalized FGM copula specified by a common parameter $p$. In this case, the analogy with the geometrical structure of the class of Bernoulli distribution allows us to provide sharp analytical bounds for convex risk measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.