Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Quantum Hamilton-Jacobi Theory, Spectral Path Integrals and Exact-WKB (2406.07829v1)

Published 12 Jun 2024 in hep-th, math-ph, math.MP, and quant-ph

Abstract: We propose a new way to perform path integrals in quantum mechanics by using a quantum version of Hamilton-Jacobi theory. In classical mechanics, Hamilton-Jacobi theory is a powerful formalism, however, its utility is not explored in quantum theory beyond the correspondence principle. The canonical transformation enables one to set the new Hamiltonian to constant or zero, but keeps the information about solution in Hamilton's characteristic function. To benefit from this in quantum theory, one must work with a formulation in which classical Hamiltonian is used. This uniquely points to phase space path integral. However, the main variable in HJ-formalism is energy, not time. Thus, we are led to consider Fourier transform of path integral, spectral path integral, $\tilde Z(E)$. This admits a representation in terms of a quantum Hamilton's characteristic functions for perturbative and non-perturbative periodic orbits, generalizing Gutzwiller's sum. This results in a path integral derivation of exact quantization conditions, complementary to the exact WKB analysis of differential equations. We apply these to generic $\mathbb Z_2$ symmetric multi-well potential problems and point out some new instanton effects, e.g., the level splitting is generically a multi-instanton effect, unlike double-well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.