Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Optimized QUBO formulation methods for quantum computing (2406.07681v2)

Published 11 Jun 2024 in quant-ph

Abstract: Several combinatorial optimization problems can be solved with NISQ devices once that a corresponding quadratic unconstrained binary optimization (QUBO) form is derived. The aim of this work is to drastically reduce the variables needed for these QUBO reformulations in order to unlock the possibility to efficiently obtain optimal solutions for a class of optimization problems with NISQ devices. This is achieved by introducing novel tools that allow an efficient use of slack variables, even for problems with non-linear constraints, without the need to approximate the starting problem. We divide our new techniques in two independent parts, called the iterative quadratic polynomial and the master-satellite methods. Hence, we show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario called Max-Profit Balance Settlement. We follow by submitting several instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios. Moreover, this study allows to appreciate several performance differences between the D-wave Advantage and Advantage2 quantum annealers.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube