Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Source -Free Domain Adaptation for Speaker Verification in Data-Scarce Languages and Noisy Channels (2406.05863v1)

Published 9 Jun 2024 in cs.SD, cs.LG, and eess.AS

Abstract: Domain adaptation is often hampered by exceedingly small target datasets and inaccessible source data. These conditions are prevalent in speech verification, where privacy policies and/or languages with scarce speech resources limit the availability of sufficient data. This paper explored techniques of sourcefree domain adaptation unto a limited target speech dataset for speaker verificationin data-scarce languages. Both language and channel mis-match between source and target were investigated. Fine-tuning methods were evaluated and compared across different sizes of labeled target data. A novel iterative cluster-learn algorithm was studied for unlabeled target datasets.

Summary

We haven't generated a summary for this paper yet.