Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Domain Adaptation via Teacher-Student Learning (1708.05466v1)

Published 17 Aug 2017 in cs.CL

Abstract: High accuracy speech recognition requires a large amount of transcribed data for supervised training. In the absence of such data, domain adaptation of a well-trained acoustic model can be performed, but even here, high accuracy usually requires significant labeled data from the target domain. In this work, we propose an approach to domain adaptation that does not require transcriptions but instead uses a corpus of unlabeled parallel data, consisting of pairs of samples from the source domain of the well-trained model and the desired target domain. To perform adaptation, we employ teacher/student (T/S) learning, in which the posterior probabilities generated by the source-domain model can be used in lieu of labels to train the target-domain model. We evaluate the proposed approach in two scenarios, adapting a clean acoustic model to noisy speech and adapting an adults speech acoustic model to children speech. Significant improvements in accuracy are obtained, with reductions in word error rate of up to 44% over the original source model without the need for transcribed data in the target domain. Moreover, we show that increasing the amount of unlabeled data results in additional model robustness, which is particularly beneficial when using simulated training data in the target-domain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jinyu Li (164 papers)
  2. Michael L. Seltzer (34 papers)
  3. Xi Wang (275 papers)
  4. Rui Zhao (241 papers)
  5. Yifan Gong (82 papers)
Citations (134)

Summary

We haven't generated a summary for this paper yet.