Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

OCCAM: Towards Cost-Efficient and Accuracy-Aware Classification Inference (2406.04508v2)

Published 6 Jun 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Classification tasks play a fundamental role in various applications, spanning domains such as healthcare, natural language processing and computer vision. With the growing popularity and capacity of machine learning models, people can easily access trained classifiers as a service online or offline. However, model use comes with a cost and classifiers of higher capacity (such as large foundation models) usually incur higher inference costs. To harness the respective strengths of different classifiers, we propose a principled approach, OCCAM, to compute the best classifier assignment strategy over classification queries (termed as the optimal model portfolio) so that the aggregated accuracy is maximized, under user-specified cost budgets. Our approach uses an unbiased and low-variance accuracy estimator and effectively computes the optimal solution by solving an integer linear programming problem. On a variety of real-world datasets, OCCAM achieves 40% cost reduction with little to no accuracy drop.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.