Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Axiomatisation of Error Intolerant Estimation (2406.02031v1)

Published 4 Jun 2024 in math.ST and stat.TH

Abstract: Point estimation is a fundamental statistical task. Given the wide selection of available point estimators, it is unclear, however, what, if any, would be universally-agreed theoretical reasons to generally prefer one such estimator over another. In this paper, we define a class of estimation scenarios which includes commonly-encountered problem situations such as both ``high stakes'' estimation and scientific inference, and introduce a new class of estimators, Error Intolerance Candidates (EIC) estimators, which we prove is optimal for it. EIC estimators are parameterised by an externally-given loss function. We prove, however, that even without such a loss function if one accepts a small number of incontrovertible-seeming assumptions regarding what constitutes a reasonable loss function, the optimal EIC estimator can be characterised uniquely. The optimal estimator derived in this second case is a previously-studied combination of maximum a posteriori (MAP) estimation and Wallace-Freeman (WF) estimation which has long been advocated among Minimum Message Length (MML) researchers, where it is derived as an approximation to the information-theoretic Strict MML estimator. Our results provide a novel justification for it that is purely Bayesian and requires neither approximations nor coding, placing both MAP and WF as special cases in the larger class of EIC estimators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube