Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entangled Relations: Leveraging NLI and Meta-analysis to Enhance Biomedical Relation Extraction (2406.00226v2)

Published 31 May 2024 in cs.CL

Abstract: Recent research efforts have explored the potential of leveraging natural language inference (NLI) techniques to enhance relation extraction (RE). In this vein, we introduce MetaEntailRE, a novel adaptation method that harnesses NLI principles to enhance RE performance. Our approach follows past works by verbalizing relation classes into class-indicative hypotheses, aligning a traditionally multi-class classification task to one of textual entailment. We introduce three key enhancements: (1) Meta-class analysis which, instead of labeling non-entailed premise-hypothesis pairs with the less informative "neutral" entailment label, provides additional context by analyzing overarching meta-relationships between classes; (2) Feasible hypothesis filtering, which removes unlikely hypotheses from consideration based on domain knowledge derived from data; and (3) Group-based prediction selection, which further improves performance by selecting highly confident predictions. MetaEntailRE is conceptually simple and empirically powerful, yielding significant improvements over conventional relation extraction techniques and other NLI formulations. We observe surprisingly large F1 gains of 17.6 points on BioRED and 13.4 points on ReTACRED compared to conventional methods, underscoring the versatility of MetaEntailRE across both biomedical and general domains.

Summary

We haven't generated a summary for this paper yet.