Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Adaptive Activation Steering: A Tuning-Free LLM Truthfulness Improvement Method for Diverse Hallucinations Categories (2406.00034v2)

Published 26 May 2024 in cs.CL and cs.AI

Abstract: Recent studies have indicated that LLMs harbor an inherent understanding of truthfulness, yet often fail to consistently express it and generate false statements. This gap between "knowing" and "telling" poses a challenge for ensuring the truthfulness of generated content. Inspired by recent work on the practice of encoding human-interpretable concepts linearly within LLMs, we treat truthfulness as a specially linearly encoded concept within LLMs, and introduce Adaptive Activation Steering (ACT), a tuning-free method that adaptively shifts LLM's activations in the "truthful" direction during inference. ACT addresses diverse categories of hallucinations by utilizing diverse truthfulness-related steering vectors and adjusting the steering intensity adaptively. Applied as an add-on across various models, ACT significantly improves truthfulness in LLaMA ($\uparrow$ 142%), LLaMA2 ($\uparrow$ 24%), Alpaca ($\uparrow$ 36%), Vicuna ($\uparrow$ 28%), LLaMA2-Chat ($\uparrow$ 19%), and LLaMA3($\uparrow$ 34%). Furthermore, we verify ACT's scalability across larger models (13B, 33B, 65B), underscoring the adaptability of ACT to large-scale LLMs. Our code is available at https://github.com/tianlwang/ACT.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.