Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Scaling Laws From Large-N Field Theory: Solvable Model Beyond the Ridgeless Limit (2405.19398v1)

Published 29 May 2024 in hep-th, cond-mat.dis-nn, cs.LG, and hep-ph

Abstract: Many machine learning models based on neural networks exhibit scaling laws: their performance scales as power laws with respect to the sizes of the model and training data set. We use large-N field theory methods to solve a model recently proposed by Maloney, Roberts and Sully which provides a simplified setting to study neural scaling laws. Our solution extends the result in this latter paper to general nonzero values of the ridge parameter, which are essential to regularize the behavior of the model. In addition to obtaining new and more precise scaling laws, we also uncover a duality transformation at the diagrams level which explains the symmetry between model and training data set sizes. The same duality underlies recent efforts to design neural networks to simulate quantum field theories.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com