Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Post-Minkowskian Theory Meets the Spinning Effective-One-Body Approach for Bound-Orbit Waveforms (2405.19181v2)

Published 29 May 2024 in gr-qc and hep-th

Abstract: Driven by advances in scattering amplitudes and worldline-based methods, recent years have seen significant progress in our ability to calculate gravitational two-body scattering observables. These observables effectively encapsulate the gravitational two-body problem in the weak-field and high-velocity regime (post-Minkowskian, PM), with applications to the bound two-body problem and gravitational-wave modeling. We leverage PM data to construct a complete inspiral-merger-ringdown waveform model for non-precessing spinning black holes within the effective-one-body (EOB) formalism: SEOBNR-PM. This model is closely based on the highly successful SEOBNRv5 model, used by the LIGO-Virgo-KAGRA Collaboration, with its key new feature being an EOB Hamiltonian derived by matching the two-body scattering angle in a perturbative PM expansion. The model performs remarkably well, showing a median mismatch against 441 numerical-relativity (NR) simulations that is somewhat lower than a similarly calibrated version of SEOBNRv5. Comparisons of the binding energy with NR also demonstrate better agreement than SEOBNRv5, despite the latter containing additional calibration to NR simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (210)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  2. J. Aasi et al. (LIGO Scientific), “Advanced LIGO,” Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  3. F. Acernese et al. (VIRGO), “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  4. T. Akutsu et al. (KAGRA), “Overview of KAGRA: Detector design and construction history,” PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
  5. B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
  6. R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run,” Phys. Rev. X 13, 041039 (2023a), arXiv:2111.03606 [gr-qc] .
  7. Alexander H. Nitz, Sumit Kumar, Yi-Fan Wang, Shilpa Kastha, Shichao Wu, Marlin Schäfer, Rahul Dhurkunde,  and Collin D. Capano, “4-OGC: Catalog of Gravitational Waves from Compact Binary Mergers,” Astrophys. J. 946, 59 (2023), arXiv:2112.06878 [astro-ph.HE] .
  8. Seth Olsen, Tejaswi Venumadhav, Jonathan Mushkin, Javier Roulet, Barak Zackay,  and Matias Zaldarriaga, “New binary black hole mergers in the LIGO-Virgo O3a data,” Phys. Rev. D 106, 043009 (2022), arXiv:2201.02252 [astro-ph.HE] .
  9. Ajit Kumar Mehta, Seth Olsen, Digvijay Wadekar, Javier Roulet, Tejaswi Venumadhav, Jonathan Mushkin, Barak Zackay,  and Matias Zaldarriaga, “New binary black hole mergers in the LIGO-Virgo O3b data,”   (2023), arXiv:2311.06061 [gr-qc] .
  10. Digvijay Wadekar, Javier Roulet, Tejaswi Venumadhav, Ajit Kumar Mehta, Barak Zackay, Jonathan Mushkin, Seth Olsen,  and Matias Zaldarriaga, “New black hole mergers in the LIGO-Virgo O3 data from a gravitational wave search including higher-order harmonics,”   (2023), arXiv:2312.06631 [gr-qc] .
  11. R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3,” Phys. Rev. X 13, 011048 (2023b), arXiv:2111.03634 [astro-ph.HE] .
  12. B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Measurements of neutron star radii and equation of state,” Phys. Rev. Lett. 121, 161101 (2018a), arXiv:1805.11581 [gr-qc] .
  13. B. P. Abbott et al. (LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER), “A gravitational-wave standard siren measurement of the Hubble constant,” Nature 551, 85–88 (2017b), arXiv:1710.05835 [astro-ph.CO] .
  14. R. Abbott et al. (LIGO Scientific, Virgo, KAGRA), “Constraints on the Cosmic Expansion History from GWTC–3,” Astrophys. J. 949, 76 (2023c), arXiv:2111.03604 [astro-ph.CO] .
  15. B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with GW150914,” Phys. Rev. Lett. 116, 221101 (2016b), [Erratum: Phys.Rev.Lett. 121, 129902 (2018)], arXiv:1602.03841 [gr-qc] .
  16. R. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog,” Phys. Rev. D 103, 122002 (2021a), arXiv:2010.14529 [gr-qc] .
  17. R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “Tests of General Relativity with GWTC-3,”   (2021b), arXiv:2112.06861 [gr-qc] .
  18. M. Punturo et al., “The Einstein Telescope: A third-generation gravitational wave observatory,” Class. Quant. Grav. 27, 194002 (2010).
  19. Vicky Kalogera et al., “The Next Generation Global Gravitational Wave Observatory: The Science Book,”   (2021), arXiv:2111.06990 [gr-qc] .
  20. David Reitze et al., “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO,” Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  21. Pau Amaro-Seoane et al. (LISA), “Laser Interferometer Space Antenna,”   (2017), arXiv:1702.00786 [astro-ph.IM] .
  22. Jun Luo et al. (TianQin), “TianQin: a space-borne gravitational wave detector,” Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
  23. Yue-Liang Wu et al. (Taiji Scientific), “China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna,” Commun. Phys. 4, 34 (2021).
  24. Ssohrab Borhanian and B. S. Sathyaprakash, “Listening to the Universe with Next Generation Ground-Based Gravitational-Wave Detectors,”   (2022), arXiv:2202.11048 [gr-qc] .
  25. Arnab Dhani, Sebastian Völkel, Alessandra Buonanno, Hector Estelles, Jonathan Gair, Harald P. Pfeiffer, Lorenzo Pompili,  and Alexandre Toubiana, “Systematic Biases in Estimating the Properties of Black Holes Due to Inaccurate Gravitational-Wave Models,”   (2024), arXiv:2404.05811 [gr-qc] .
  26. B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo, VIRGO), “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Rev. Rel. 21, 3 (2018b), arXiv:1304.0670 [gr-qc] .
  27. Matthew Evans et al., “A Horizon Study for Cosmic Explorer: Science, Observatories, and Community,”   (2021), arXiv:2109.09882 [astro-ph.IM] .
  28. Slavko Bogdanov et al., “Snowmass 2021 Cosmic Frontier White Paper: The Dense Matter Equation of State and QCD Phase Transitions,” in Snowmass 2021 (2022) arXiv:2209.07412 [astro-ph.HE] .
  29. Monica Colpi et al., “LISA Definition Study Report,”   (2024), arXiv:2402.07571 [astro-ph.CO] .
  30. Alexandre Toubiana, Lorenzo Pompili, Alessandra Buonanno, Jonathan R. Gair,  and Michael L. Katz, “Measuring source properties and quasinormal mode frequencies of heavy massive black-hole binaries with LISA,” Phys. Rev. D 109, 104019 (2024), arXiv:2307.15086 [gr-qc] .
  31. Anuradha Gupta et al., “Possible Causes of False General Relativity Violations in Gravitational Wave Observations,”   (2024), arXiv:2405.02197 [gr-qc] .
  32. Frans Pretorius, “Evolution of binary black hole spacetimes,” Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014 .
  33. Manuela Campanelli, C. O. Lousto, P. Marronetti,  and Y. Zlochower, “Accurate evolutions of orbiting black-hole binaries without excision,” Phys. Rev. Lett. 96, 111101 (2006), arXiv:gr-qc/0511048 .
  34. John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz,  and James van Meter, “Gravitational wave extraction from an inspiraling configuration of merging black holes,” Phys. Rev. Lett. 96, 111102 (2006), arXiv:gr-qc/0511103 .
  35. Toshifumi Futamase and Yousuke Itoh, “The post-Newtonian approximation for relativistic compact binaries,” Living Rev. Rel. 10, 2 (2007).
  36. Luc Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries,” Living Rev. Rel. 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
  37. Rafael A. Porto, “The effective field theorist’s approach to gravitational dynamics,” Phys. Rept. 633, 1–104 (2016), arXiv:1601.04914 [hep-th] .
  38. Schäfer, Gerhard and Jaranowski, Piotr, “Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries,” Living Rev. Rel. 21, 7 (2018), arXiv:1805.07240 [gr-qc] .
  39. Michèle Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive review,” Rept. Prog. Phys. 83, 075901 (2020), arXiv:1807.01699 [hep-th] .
  40. Piotr Jaranowski and Gerhard Schaefer, “Third postNewtonian higher order ADM Hamilton dynamics for two-body point mass systems,” Phys. Rev. D 57, 7274–7291 (1998), [Erratum: Phys.Rev.D 63, 029902 (2001)], arXiv:gr-qc/9712075 .
  41. Damour, Thibault and Jaranowski, Piotr and Schäfer, Gerhard, “Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems,” Phys. Rev. D89, 064058 (2014), arXiv:1401.4548 [gr-qc] .
  42. Piotr Jaranowski and Gerhard Schäfer, “Derivation of local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries,” Phys. Rev. D 92, 124043 (2015), arXiv:1508.01016 [gr-qc] .
  43. Laura Bernard, Luc Blanchet, Alejandro Bohé, Guillaume Faye,  and Sylvain Marsat, “Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation,” Phys. Rev. D 93, 084037 (2016), arXiv:1512.02876 [gr-qc] .
  44. Laura Bernard, Luc Blanchet, Alejandro Bohé, Guillaume Faye,  and Sylvain Marsat, “Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order,” Phys. Rev. D95, 044026 (2017), arXiv:1610.07934 [gr-qc] .
  45. Damour, Thibault and Jaranowski, Piotr and Schäfer, Gerhard, “Conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity,” Phys. Rev. D93, 084014 (2016), arXiv:1601.01283 [gr-qc] .
  46. Luc Blanchet, Guillaume Faye, Quentin Henry, François Larrouturou,  and David Trestini, “Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order,” Phys. Rev. D 108, 064041 (2023a), arXiv:2304.11186 [gr-qc] .
  47. Luc Blanchet, Guillaume Faye, Quentin Henry, François Larrouturou,  and David Trestini, “Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order,” Phys. Rev. Lett. 131, 121402 (2023b), arXiv:2304.11185 [gr-qc] .
  48. Stefano Foffa and Riccardo Sturani, “Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach I: Regularized Lagrangian,” Phys. Rev. D100, 024047 (2019), arXiv:1903.05113 [gr-qc] .
  49. Stefano Foffa, Rafael A. Porto, Ira Rothstein,  and Riccardo Sturani, “Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach II: Renormalized Lagrangian,” Phys. Rev. D100, 024048 (2019), arXiv:1903.05118 [gr-qc] .
  50. Blümlein, J. and Maier, A. and Marquard, P. and Schäfer, G., “Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach,” Nucl. Phys. B 955, 115041 (2020), arXiv:2003.01692 [gr-qc] .
  51. K. Westpfahl and M. Goller, “Gravitational scattering of two relativistic particles in postlinear approximation,” Lett. Nuovo Cim. 26, 573–576 (1979).
  52. K. Westpfahl and H. Hoyler, “Gravitational bremsstrahlung in post-linear fast-motion approximation,” Lett. Nuovo Cim. 27, 581–585 (1980).
  53. LLuis Bel, T. Damour, N. Deruelle, J. Ibanez,  and J. Martin, “Poincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativity,” Gen. Rel. Grav. 13, 963–1004 (1981).
  54. Konradin Westpfahl, “High-Speed Scattering of Charged and Uncharged Particles in General Relativity,” Fortsch. Phys. 33, 417–493 (1985).
  55. Gerhard Schäfer, “The adm hamiltonian at the postlinear approximation,” General relativity and gravitation 18, 255–270 (1986).
  56. Tomas Ledvinka, Gerhard Schaefer,  and Jiri Bicak, “Relativistic Closed-Form Hamiltonian for Many-Body Gravitating Systems in the Post-Minkowskian Approximation,” Phys. Rev. Lett. 100, 251101 (2008), arXiv:0807.0214 [gr-qc] .
  57. Alessandra Buonanno, Mohammed Khalil, Donal O’Connell, Radu Roiban, Mikhail P. Solon,  and Mao Zeng, “Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,” in 2022 Snowmass Summer Study (2022) arXiv:2204.05194 [hep-th] .
  58. Gabriele Travaglini et al., “The SAGEX review on scattering amplitudes*,” J. Phys. A 55, 443001 (2022), arXiv:2203.13011 [hep-th] .
  59. N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Plante,  and P. Vanhove, “Chapter 13: Post-Minkowskian expansion from scattering amplitudes,” J. Phys. A 55, 443014 (2022), arXiv:2203.13024 [hep-th] .
  60. David A. Kosower, Ricardo Monteiro,  and Donal O’Connell, “Chapter 14: Classical gravity from scattering amplitudes,” J. Phys. A 55, 443015 (2022), arXiv:2203.13025 [hep-th] .
  61. Yasushi Mino, Misao Sasaki,  and Takahiro Tanaka, “Gravitational radiation reaction to a particle motion,” Phys. Rev. D 55, 3457–3476 (1997), arXiv:gr-qc/9606018 .
  62. Theodore C. Quinn and Robert M. Wald, “An Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time,” Phys. Rev. D 56, 3381–3394 (1997), arXiv:gr-qc/9610053 .
  63. Leor Barack, Yasushi Mino, Hiroyuki Nakano, Amos Ori,  and Misao Sasaki, “Calculating the gravitational selfforce in Schwarzschild space-time,” Phys. Rev. Lett. 88, 091101 (2002), arXiv:gr-qc/0111001 .
  64. Leor Barack and Amos Ori, “Gravitational selfforce on a particle orbiting a Kerr black hole,” Phys. Rev. Lett. 90, 111101 (2003), arXiv:gr-qc/0212103 .
  65. Samuel E. Gralla and Robert M. Wald, “A Rigorous Derivation of Gravitational Self-force,” Class. Quant. Grav. 25, 205009 (2008), [Erratum: Class.Quant.Grav. 28, 159501 (2011)], arXiv:0806.3293 [gr-qc] .
  66. Steven L. Detweiler, “A Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry,” Phys. Rev. D77, 124026 (2008), arXiv:0804.3529 [gr-qc] .
  67. Tobias S. Keidl, Abhay G. Shah, John L. Friedman, Dong-Hoon Kim,  and Larry R. Price, “Gravitational Self-force in a Radiation Gauge,” Phys. Rev. D 82, 124012 (2010), [Erratum: Phys.Rev.D 90, 109902 (2014)], arXiv:1004.2276 [gr-qc] .
  68. Maarten van de Meent, “Gravitational self-force on generic bound geodesics in Kerr spacetime,” Phys. Rev. D 97, 104033 (2018), arXiv:1711.09607 [gr-qc] .
  69. Adam Pound, “Second-order gravitational self-force,” Phys. Rev. Lett. 109, 051101 (2012), arXiv:1201.5089 [gr-qc] .
  70. Adam Pound, Barry Wardell, Niels Warburton,  and Jeremy Miller, “Second-order self-force calculation of the gravitational binding energy in compact binaries,” Phys. Rev. Lett. 124, 021101 (2020), arXiv:1908.07419 [gr-qc] .
  71. Samuel E. Gralla and Kunal Lobo, “Self-force effects in post-Minkowskian scattering,” Class. Quant. Grav. 39, 095001 (2022), arXiv:2110.08681 [gr-qc] .
  72. Adam Pound and Barry Wardell, “Black hole perturbation theory and gravitational self-force,”   (2021), arXiv:2101.04592 [gr-qc] .
  73. Niels Warburton, Adam Pound, Barry Wardell, Jeremy Miller,  and Leanne Durkan, “Gravitational-Wave Energy Flux for Compact Binaries through Second Order in the Mass Ratio,” Phys. Rev. Lett. 127, 151102 (2021), arXiv:2107.01298 [gr-qc] .
  74. Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan,  and Alexandre Le Tiec, “Gravitational Waveforms for Compact Binaries from Second-Order Self-Force Theory,” Phys. Rev. Lett. 130, 241402 (2023), arXiv:2112.12265 [gr-qc] .
  75. A. Buonanno and T. Damour, “Effective one-body approach to general relativistic two-body dynamics,” Phys. Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091 .
  76. Alessandra Buonanno and Thibault Damour, “Transition from inspiral to plunge in binary black hole coalescences,” Phys. Rev. D 62, 064015 (2000), arXiv:gr-qc/0001013 .
  77. Thibault Damour, Piotr Jaranowski,  and Gerhard Schaefer, “On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation,” Phys. Rev. D 62, 084011 (2000), arXiv:gr-qc/0005034 .
  78. Thibault Damour, “Coalescence of two spinning black holes: an effective one-body approach,” Phys. Rev. D 64, 124013 (2001), arXiv:gr-qc/0103018 .
  79. Alessandra Buonanno, Yanbei Chen,  and Thibault Damour, “Transition from inspiral to plunge in precessing binaries of spinning black holes,” Phys. Rev. D 74, 104005 (2006), arXiv:gr-qc/0508067 .
  80. Alessandra Buonanno, Gregory B. Cook,  and Frans Pretorius, “Inspiral, merger and ring-down of equal-mass black-hole binaries,” Phys. Rev. D 75, 124018 (2007a), arXiv:gr-qc/0610122 .
  81. Alessandra Buonanno, Yi Pan, John G. Baker, Joan Centrella, Bernard J. Kelly, Sean T. McWilliams,  and James R. van Meter, “Toward faithful templates for non-spinning binary black holes using the effective-one-body approach,” Phys. Rev. D 76, 104049 (2007b), arXiv:0706.3732 [gr-qc] .
  82. Thibault Damour and Alessandro Nagar, “Comparing Effective-One-Body gravitational waveforms to accurate numerical data,” Phys. Rev. D 77, 024043 (2008), arXiv:0711.2628 [gr-qc] .
  83. Yi Pan, Alessandra Buonanno, Michael Boyle, Luisa T. Buchman, Lawrence E. Kidder, Harald P. Pfeiffer,  and Mark A. Scheel, “Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism,” Phys. Rev. D 84, 124052 (2011a), arXiv:1106.1021 [gr-qc] .
  84. Thibault Damour, Alessandro Nagar,  and Sebastiano Bernuzzi, “Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion,” Phys. Rev. D 87, 084035 (2013), arXiv:1212.4357 [gr-qc] .
  85. Yi Pan, Alessandra Buonanno, Andrea Taracchini, Lawrence E. Kidder, Abdul H. Mroué, Harald P. Pfeiffer, Mark A. Scheel,  and Béla Szilágyi, “Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism,” Phys. Rev. D 89, 084006 (2014), arXiv:1307.6232 [gr-qc] .
  86. Andrea Taracchini et al., “Effective-one-body model for black-hole binaries with generic mass ratios and spins,” Phys. Rev. D 89, 061502 (2014), arXiv:1311.2544 [gr-qc] .
  87. Alejandro Bohé et al., “Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors,” Phys. Rev. D 95, 044028 (2017), arXiv:1611.03703 [gr-qc] .
  88. Stanislav Babak, Andrea Taracchini,  and Alessandra Buonanno, “Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity,” Phys. Rev. D 95, 024010 (2017), arXiv:1607.05661 [gr-qc] .
  89. Alessandro Nagar et al., “Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects,” Phys. Rev. D 98, 104052 (2018), arXiv:1806.01772 [gr-qc] .
  90. Serguei Ossokine et al., “Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation,” Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
  91. Rossella Gamba, Sarp Akçay, Sebastiano Bernuzzi,  and Jake Williams, “Effective-one-body waveforms for precessing coalescing compact binaries with post-Newtonian twist,” Phys. Rev. D 106, 024020 (2022), arXiv:2111.03675 [gr-qc] .
  92. Alessandro Nagar, Piero Rettegno, Rossella Gamba, Simone Albanesi, Angelica Albertini,  and Sebastiano Bernuzzi, “Analytic systematics in next generation of effective-one-body gravitational waveform models for future observations,” Phys. Rev. D 108, 124018 (2023), arXiv:2304.09662 [gr-qc] .
  93. Lorenzo Pompili et al., “Laying the foundation of the effective-one-body waveform models SEOBNRv5: Improved accuracy and efficiency for spinning nonprecessing binary black holes,” Phys. Rev. D 108, 124035 (2023), arXiv:2303.18039 [gr-qc] .
  94. Antoni Ramos-Buades, Alessandra Buonanno, Héctor Estellés, Mohammed Khalil, Deyan P. Mihaylov, Serguei Ossokine, Lorenzo Pompili,  and Mahlet Shiferaw, “Next generation of accurate and efficient multipolar precessing-spin effective-one-body waveforms for binary black holes,” Phys. Rev. D 108, 124037 (2023), arXiv:2303.18046 [gr-qc] .
  95. Maarten van de Meent, Alessandra Buonanno, Deyan P. Mihaylov, Serguei Ossokine, Lorenzo Pompili, Niels Warburton, Adam Pound, Barry Wardell, Leanne Durkan,  and Jeremy Miller, “Enhancing the SEOBNRv5 effective-one-body waveform model with second-order gravitational self-force fluxes,” Phys. Rev. D 108, 124038 (2023), arXiv:2303.18026 [gr-qc] .
  96. Thibault Damour, “Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory,” Phys. Rev. D94, 104015 (2016), arXiv:1609.00354 [gr-qc] .
  97. Clifford Cheung, Ira Z. Rothstein,  and Mikhail P. Solon, “From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion,” Phys. Rev. Lett. 121, 251101 (2018), arXiv:1808.02489 [hep-th] .
  98. Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon,  and Mao Zeng, “Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,” Phys. Rev. Lett. 122, 201603 (2019a), arXiv:1901.04424 [hep-th] .
  99. Zvi Bern, Dimitrios Kosmopoulos, Andrés Luna, Radu Roiban,  and Fei Teng, “Binary Dynamics through the Fifth Power of Spin at O(G2),” Phys. Rev. Lett. 130, 201402 (2023), arXiv:2203.06202 [hep-th] .
  100. David A. Kosower, Ben Maybee,  and Donal O’Connell, “Amplitudes, Observables, and Classical Scattering,” JHEP 02, 137 (2019), arXiv:1811.10950 [hep-th] .
  101. N.E. J. Bjerrum-Bohr, Poul H. Damgaard, Guido Festuccia, Ludovic Planté,  and Pierre Vanhove, “General Relativity from Scattering Amplitudes,” Phys. Rev. Lett. 121, 171601 (2018), arXiv:1806.04920 [hep-th] .
  102. Andrea Cristofoli, N. E. J. Bjerrum-Bohr, Poul H. Damgaard,  and Pierre Vanhove, “Post-Minkowskian Hamiltonians in general relativity,” Phys. Rev. D100, 084040 (2019), arXiv:1906.01579 [hep-th] .
  103. Poul H. Damgaard, Kays Haddad,  and Andreas Helset, “Heavy Black Hole Effective Theory,” JHEP 11, 070 (2019), arXiv:1908.10308 [hep-ph] .
  104. Andreas Brandhuber, Gang Chen, Gabriele Travaglini,  and Congkao Wen, “Classical gravitational scattering from a gauge-invariant double copy,” JHEP 10, 118 (2021), arXiv:2108.04216 [hep-th] .
  105. Justin Vines, “Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings,” Class. Quant. Grav. 35, 084002 (2018), arXiv:1709.06016 [gr-qc] .
  106. Kälin, Gregor and Porto, Rafael A., “Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics,” JHEP 11, 106 (2020), arXiv:2006.01184 [hep-th] .
  107. Kälin, Gregor and Liu, Zhengwen and Porto, Rafael A., “Conservative Dynamics of Binary Systems to Third Post-Minkowskian Order from the Effective Field Theory Approach,” Phys. Rev. Lett. 125, 261103 (2020), arXiv:2007.04977 [hep-th] .
  108. Gustav Mogull, Jan Plefka,  and Jan Steinhoff, “Classical black hole scattering from a worldline quantum field theory,” JHEP 02, 048 (2021), arXiv:2010.02865 [hep-th] .
  109. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,  and Jan Steinhoff, “SUSY in the sky with gravitons,” JHEP 01, 027 (2022a), arXiv:2109.04465 [hep-th] .
  110. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,  and Benjamin Sauer, “All things retarded: radiation-reaction in worldline quantum field theory,” JHEP 10, 128 (2022b), arXiv:2207.00569 [hep-th] .
  111. Mohammed Khalil, Alessandra Buonanno, Jan Steinhoff,  and Justin Vines, “Energetics and scattering of gravitational two-body systems at fourth post-Minkowskian order,” Phys. Rev. D 106, 024042 (2022), arXiv:2204.05047 [gr-qc] .
  112. Zvi Bern, Julio Parra-Martinez, Radu Roiban, Michael S. Ruf, Chia-Hsien Shen, Mikhail P. Solon,  and Mao Zeng, “Scattering Amplitudes and Conservative Binary Dynamics at 𝒪⁢(G4)𝒪superscript𝐺4{\cal O}(G^{4})caligraphic_O ( italic_G start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ),” Phys. Rev. Lett. 126, 171601 (2021a), arXiv:2101.07254 [hep-th] .
  113. Zvi Bern, Julio Parra-Martinez, Radu Roiban, Michael S. Ruf, Chia-Hsien Shen, Mikhail P. Solon,  and Mao Zeng, “Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at O(G4),” Phys. Rev. Lett. 128, 161103 (2022a), arXiv:2112.10750 [hep-th] .
  114. Poul H. Damgaard, Elias Roos Hansen, Ludovic Planté,  and Pierre Vanhove, “Classical observables from the exponential representation of the gravitational S-matrix,” JHEP 09, 183 (2023), arXiv:2307.04746 [hep-th] .
  115. Christoph Dlapa, Gregor Kälin, Zhengwen Liu,  and Rafael A. Porto, “Conservative Dynamics of Binary Systems at Fourth Post-Minkowskian Order in the Large-Eccentricity Expansion,” Phys. Rev. Lett. 128, 161104 (2022), arXiv:2112.11296 [hep-th] .
  116. Christoph Dlapa, Gregor Kälin, Zhengwen Liu,  and Rafael A. Porto, “Bootstrapping the relativistic two-body problem,” JHEP 08, 109 (2023a), arXiv:2304.01275 [hep-th] .
  117. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka, Benjamin Sauer,  and Yingxuan Xu, “Conservative Scattering of Spinning Black Holes at Fourth Post-Minkowskian Order,” Phys. Rev. Lett. 131, 151401 (2023a), arXiv:2306.01714 [hep-th] .
  118. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,  and Benjamin Sauer, “Tidal effects and renormalization at fourth post-Minkowskian order,” Phys. Rev. D 109, L041504 (2024), arXiv:2312.00719 [hep-th] .
  119. Julio Parra-Martinez, Michael S. Ruf,  and Mao Zeng, “Extremal black hole scattering at 𝒪⁢(G3)𝒪superscript𝐺3\mathcal{O}(G^{3})caligraphic_O ( italic_G start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ): graviton dominance, eikonal exponentiation, and differential equations,” JHEP 11, 023 (2020), arXiv:2005.04236 [hep-th] .
  120. Stefan Weinzierl, “Feynman Integrals,”  (2022) arXiv:2201.03593 [hep-th] .
  121. Samuel Abreu, Ruth Britto,  and Claude Duhr, “The SAGEX review on scattering amplitudes Chapter 3: Mathematical structures in Feynman integrals,” J. Phys. A 55, 443004 (2022), arXiv:2203.13014 [hep-th] .
  122. Johannes Blümlein and Carsten Schneider, “Chapter 4: Multi-loop Feynman integrals,” J. Phys. A 55, 443005 (2022), arXiv:2203.13015 [hep-th] .
  123. Hjalte Frellesvig, Roger Morales,  and Matthias Wilhelm, “Calabi-Yau Meets Gravity: A Calabi-Yau Threefold at Fifth Post-Minkowskian Order,” Phys. Rev. Lett. 132, 201602 (2024a), arXiv:2312.11371 [hep-th] .
  124. Hjalte Frellesvig, Roger Morales,  and Matthias Wilhelm, “Classifying post-Minkowskian geometries for gravitational waves via loop-by-loop Baikov,”   (2024b), arXiv:2405.17255 [hep-th] .
  125. Albrecht Klemm, Christoph Nega, Benjamin Sauer,  and Jan Plefka, “CY in the Sky,”   (2024), arXiv:2401.07899 [hep-th] .
  126. Zvi Bern, Lance J. Dixon, David C. Dunbar,  and David A. Kosower, “Fusing gauge theory tree amplitudes into loop amplitudes,” Nucl. Phys. B435, 59–101 (1995), arXiv:hep-ph/9409265 [hep-ph] .
  127. Zvi Bern and Yu-tin Huang, “Basics of Generalized Unitarity,” J. Phys. A 44, 454003 (2011), arXiv:1103.1869 [hep-th] .
  128. Zvi Bern, John Joseph M. Carrasco,  and Henrik Johansson, “Perturbative Quantum Gravity as a Double Copy of Gauge Theory,” Phys. Rev. Lett. 105, 061602 (2010), arXiv:1004.0476 [hep-th] .
  129. Zvi Bern, John Joseph Carrasco, Marco Chiodaroli, Henrik Johansson,  and Radu Roiban, “The Duality Between Color and Kinematics and its Applications,”   (2019b), arXiv:1909.01358 [hep-th] .
  130. Zvi Bern, John Joseph Carrasco, Marco Chiodaroli, Henrik Johansson,  and Radu Roiban, “The SAGEX review on scattering amplitudes Chapter 2: An invitation to color-kinematics duality and the double copy,” J. Phys. A 55, 443003 (2022b), arXiv:2203.13013 [hep-th] .
  131. Tim Adamo, John Joseph M. Carrasco, Mariana Carrillo-González, Marco Chiodaroli, Henriette Elvang, Henrik Johansson, Donal O’Connell, Radu Roiban,  and Oliver Schlotterer, “Snowmass White Paper: the Double Copy and its Applications,” in 2022 Snowmass Summer Study (2022) arXiv:2204.06547 [hep-th] .
  132. Ming-Zhi Chung, Yu-Tin Huang, Jung-Wook Kim,  and Sangmin Lee, “The simplest massive S-matrix: from minimal coupling to Black Holes,” JHEP 04, 156 (2019), arXiv:1812.08752 [hep-th] .
  133. Nima Arkani-Hamed, Yu-tin Huang,  and Donal O’Connell, “Kerr black holes as elementary particles,” JHEP 01, 046 (2020), arXiv:1906.10100 [hep-th] .
  134. Zvi Bern, Andres Luna, Radu Roiban, Chia-Hsien Shen,  and Mao Zeng, “Spinning black hole binary dynamics, scattering amplitudes, and effective field theory,” Phys. Rev. D 104, 065014 (2021b), arXiv:2005.03071 [hep-th] .
  135. Yilber Fabian Bautista, Alfredo Guevara, Chris Kavanagh,  and Justin Vines, “Scattering in black hole backgrounds and higher-spin amplitudes. Part I,” JHEP 03, 136 (2023a), arXiv:2107.10179 [hep-th] .
  136. Yilber Fabian Bautista, Alfredo Guevara, Chris Kavanagh,  and Justin Vines, “Scattering in black hole backgrounds and higher-spin amplitudes. Part II,” JHEP 05, 211 (2023b), arXiv:2212.07965 [hep-th] .
  137. Marco Chiodaroli, Henrik Johansson,  and Paolo Pichini, “Compton black-hole scattering for s ≤\leq≤ 5/2,” JHEP 02, 156 (2022), arXiv:2107.14779 [hep-th] .
  138. Rafael Aoude, Kays Haddad,  and Andreas Helset, “Classical gravitational scattering amplitude at O(G2S1∞\infty∞S2∞\infty∞),” Phys. Rev. D 108, 024050 (2023), arXiv:2304.13740 [hep-th] .
  139. Lucile Cangemi, Marco Chiodaroli, Henrik Johansson, Alexander Ochirov, Paolo Pichini,  and Evgeny Skvortsov, “From higher-spin gauge interactions to Compton amplitudes for root-Kerr,”   (2023), arXiv:2311.14668 [hep-th] .
  140. Mohammed Khalil, Alessandra Buonanno, Hector Estelles, Deyan P. Mihaylov, Serguei Ossokine, Lorenzo Pompili,  and Antoni Ramos-Buades, “Theoretical groundwork supporting the precessing-spin two-body dynamics of the effective-one-body waveform models SEOBNRv5,” Phys. Rev. D 108, 124036 (2023), arXiv:2303.18143 [gr-qc] .
  141. Alessandra Buonanno, Gustav Uhre Jakobsen,  and Gustav Mogull, “Post-Minkowskian Theory Meets the Spinning Effective-One-Body Approach for Two-Body Scattering,”   (2024), arXiv:2402.12342 [gr-qc] .
  142. Alfredo Guevara, Alexander Ochirov,  and Justin Vines, “Scattering of Spinning Black Holes from Exponentiated Soft Factors,” JHEP 09, 056 (2019), arXiv:1812.06895 [hep-th] .
  143. Dimitrios Kosmopoulos and Andres Luna, “Quadratic-in-spin Hamiltonian at 𝒪𝒪\mathcal{O}caligraphic_O(G2) from scattering amplitudes,” JHEP 07, 037 (2021), arXiv:2102.10137 [hep-th] .
  144. Wei-Ming Chen, Ming-Zhi Chung, Yu-tin Huang,  and Jung-Wook Kim, “The 2PM Hamiltonian for binary Kerr to quartic in spin,” JHEP 08, 148 (2022), arXiv:2111.13639 [hep-th] .
  145. Gustav Uhre Jakobsen and Gustav Mogull, “Conservative and Radiative Dynamics of Spinning Bodies at Third Post-Minkowskian Order Using Worldline Quantum Field Theory,” Phys. Rev. Lett. 128, 141102 (2022), arXiv:2201.07778 [hep-th] .
  146. Gustav Uhre Jakobsen and Gustav Mogull, “Linear response, Hamiltonian, and radiative spinning two-body dynamics,” Phys. Rev. D 107, 044033 (2023), arXiv:2210.06451 [hep-th] .
  147. Fernando Febres Cordero, Manfred Kraus, Guanda Lin, Michael S. Ruf,  and Mao Zeng, “Conservative Binary Dynamics with a Spinning Black Hole at O(G3) from Scattering Amplitudes,” Phys. Rev. Lett. 130, 021601 (2023), arXiv:2205.07357 [hep-th] .
  148. We plan to update our SEOBNR-PM model in the near future to include the recent findings in Ref. Dlapa et al. (2024), which allow to derive the local-in-time EOB Hamiltonian for bound orbits at 4PM.
  149. Deyan P. Mihaylov, Serguei Ossokine, Alessandra Buonanno, Hector Estelles, Lorenzo Pompili, Michael Pürrer,  and Antoni Ramos-Buades, “pySEOBNR: a software package for the next generation of effective-one-body multipolar waveform models,”   (2023), arXiv:2303.18203 [gr-qc] .
  150. Thibault Damour, Bala R. Iyer,  and Alessandro Nagar, “Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries,” Phys. Rev. D 79, 064004 (2009), arXiv:0811.2069 [gr-qc] .
  151. Thibault Damour and Alessandro Nagar, “Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries,” Phys. Rev. D 76, 064028 (2007), arXiv:0705.2519 [gr-qc] .
  152. Yi Pan, Alessandra Buonanno, Ryuichi Fujita, Etienne Racine,  and Hideyuki Tagoshi, “Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries,” Phys. Rev. D 83, 064003 (2011b), [Erratum: Phys.Rev.D 87, 109901 (2013)], arXiv:1006.0431 [gr-qc] .
  153. Thibault Damour, Bala R. Iyer, Piotr Jaranowski,  and B. S. Sathyaprakash, “Gravitational waves from black hole binary inspiral and merger: The Span of third postNewtonian effective one-body templates,” Phys. Rev. D 67, 064028 (2003), arXiv:gr-qc/0211041 .
  154. Thibault Damour and Alessandro Nagar, “A new analytic representation of the ringdown waveform of coalescing spinning black hole binaries,” Phys. Rev. D 90, 024054 (2014), arXiv:1406.0401 [gr-qc] .
  155. Roberto Cotesta, Alessandra Buonanno, Alejandro Bohé, Andrea Taracchini, Ian Hinder,  and Serguei Ossokine, “Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics,” Phys. Rev. D 98, 084028 (2018), arXiv:1803.10701 [gr-qc] .
  156. Mathias Driesse, Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka, Benjamin Sauer,  and Johann Usovitsch, “Conservative Black Hole Scattering at Fifth Post-Minkowskian and First Self-Force Order,”   (2024), arXiv:2403.07781 [hep-th] .
  157. Thibault Damour, “High-energy gravitational scattering and the general relativistic two-body problem,” Phys. Rev. D97, 044038 (2018), arXiv:1710.10599 [gr-qc] .
  158. Andrea Antonelli, Alessandra Buonanno, Jan Steinhoff, Maarten van de Meent,  and Justin Vines, “Energetics of two-body Hamiltonians in post-Minkowskian gravity,” Phys. Rev. D99, 104004 (2019), arXiv:1901.07102 [gr-qc] .
  159. Andrea Antonelli, Chris Kavanagh, Mohammed Khalil, Jan Steinhoff,  and Justin Vines, “Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios,” Phys. Rev. Lett. 125, 011103 (2020), arXiv:2003.11391 [gr-qc] .
  160. Manoj K. Mandal, Pierpaolo Mastrolia, Raj Patil,  and Jan Steinhoff, “Gravitational spin-orbit Hamiltonian at NNNLO in the post-Newtonian framework,” JHEP 03, 130 (2023), arXiv:2209.00611 [hep-th] .
  161. Jung-Wook Kim, Michèle Levi,  and Zhewei Yin, “N3LO spin-orbit interaction via the EFT of spinning gravitating objects,” JHEP 05, 184 (2023), arXiv:2208.14949 [hep-th] .
  162. Michele Levi and Jan Steinhoff, “Leading order finite size effects with spins for inspiralling compact binaries,” JHEP 06, 059 (2015), arXiv:1410.2601 [gr-qc] .
  163. We thank Mohammed Khalil for providing us with suitable PN Hamiltonians to compare with.
  164. As a spin-dependent bound-orbit correction would only arise at 5.5PN order, we choose not to include it.
  165. Serguei Ossokine, Tim Dietrich, Evan Foley, Reza Katebi,  and Geoffrey Lovelace, “Assessing the Energetics of Spinning Binary Black Hole Systems,” Phys. Rev. D 98, 104057 (2018), arXiv:1712.06533 [gr-qc] .
  166. Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn,  and Kurt Smith, “Cython: The Best of Both Worlds,” Comput. Sci. Eng. 13, 31–39 (2011).
  167. Thibault Damour, Alessandro Nagar, Denis Pollney,  and Christian Reisswig, “Energy versus Angular Momentum in Black Hole Binaries,” Phys. Rev. Lett. 108, 131101 (2012), arXiv:1110.2938 [gr-qc] .
  168. Alexandre Le Tiec, Enrico Barausse,  and Alessandra Buonanno, “Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems,” Phys. Rev. Lett. 108, 131103 (2012), arXiv:1111.5609 [gr-qc] .
  169. Alessandro Nagar, Thibault Damour, Christian Reisswig,  and Denis Pollney, “Energetics and phasing of nonprecessing spinning coalescing black hole binaries,” Phys. Rev. D 93, 044046 (2016), arXiv:1506.08457 [gr-qc] .
  170. Alexandre Le Tiec, Abdul H. Mroue, Leor Barack, Alessandra Buonanno, Harald P. Pfeiffer, Norichika Sago,  and Andrea Taracchini, “Periastron Advance in Black Hole Binaries,” Phys. Rev. Lett. 107, 141101 (2011), arXiv:1106.3278 [gr-qc] .
  171. Tanja Hinderer et al., “Periastron advance in spinning black hole binaries: comparing effective-one-body and Numerical Relativity,” Phys. Rev. D 88, 084005 (2013), arXiv:1309.0544 [gr-qc] .
  172. Tim Dietrich, Sebastiano Bernuzzi, Maximiliano Ujevic,  and Wolfgang Tichy, “Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the stars’ rotation,” Phys. Rev. D 95, 044045 (2017), arXiv:1611.07367 [gr-qc] .
  173. James M. Bardeen, William H. Press,  and Saul A Teukolsky, “Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J. 178, 347 (1972).
  174. Xisco Jiménez-Forteza, David Keitel, Sascha Husa, Mark Hannam, Sebastian Khan,  and Michael Pürrer, “Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy,” Phys. Rev. D 95, 064024 (2017), arXiv:1611.00332 [gr-qc] .
  175. Fabian Hofmann, Enrico Barausse,  and Luciano Rezzolla, “The final spin from binary black holes in quasi-circular orbits,” Astrophys. J. Lett. 825, L19 (2016), arXiv:1605.01938 [gr-qc] .
  176. B. S. Sathyaprakash and S. V. Dhurandhar, “Choice of filters for the detection of gravitational waves from coalescing binaries,” Phys. Rev. D 44, 3819–3834 (1991).
  177. Lee Samuel Finn and David F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. D 47, 2198–2219 (1993), arXiv:gr-qc/9301003 .
  178. Lisa Barsotti, Peter Fritschel, Matthew Evans,  and Slawomir Gras (LIGO Collaboration), “Updated advanced ligo sensitivity design curve,” https://dcc.ligo.org/LIGO-T1800044/public (2018), LIGO Document T1800044-v5.
  179. Gregory Ashton et al., “BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy,” Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
  180. Michael Boyle et al., “The SXS Collaboration catalog of binary black hole simulations,” Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
  181. Abdul H. Mroue et al., “Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy,” Phys. Rev. Lett. 111, 241104 (2013), arXiv:1304.6077 [gr-qc] .
  182. Daniel A. Hemberger, Geoffrey Lovelace, Thomas J. Loredo, Lawrence E. Kidder, Mark A. Scheel, Bela Szilagyi, Nicholas W. Taylor,  and Saul A. Teukolsky, “Final spin and radiated energy in numerical simulations of binary black holes with equal masses and equal, aligned or anti-aligned spins,” Phys. Rev. D88, 064014 (2013), arXiv:1305.5991 [gr-qc] .
  183. Mark A. Scheel, Matthew Giesler, Daniel A. Hemberger, Geoffrey Lovelace, Kevin Kuper, Michael Boyle, B. Szilagyi,  and Lawrence E. Kidder, “Improved methods for simulating nearly extremal binary black holes,” Class. Quant. Grav. 32, 105009 (2015), arXiv:1412.1803 [gr-qc] .
  184. Geoffrey Lovelace et al., “Nearly extremal apparent horizons in simulations of merging black holes,” Class. Quant. Grav. 32, 065007 (2015), arXiv:1411.7297 [gr-qc] .
  185. Tony Chu, Heather Fong, Prayush Kumar, Harald P. Pfeiffer, Michael Boyle, Daniel A. Hemberger, Lawrence E. Kidder, Mark A. Scheel,  and Bela Szilagyi, “On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology,” Class. Quant. Grav. 33, 165001 (2016), arXiv:1512.06800 [gr-qc] .
  186. Jonathan Blackman, Scott E. Field, Chad R. Galley, Bela Szilagyi, Mark A. Scheel, Manuel Tiglio,  and Daniel A. Hemberger, “Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models,” Phys. Rev. Lett. 115, 121102 (2015), arXiv:1502.07758 [gr-qc] .
  187. B. P. Abbott et al. (Virgo, LIGO Scientific), “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett. 116, 241103 (2016c), arXiv:1606.04855 [gr-qc] .
  188. B. P. Abbott et al. (Virgo, LIGO Scientific), “Directly comparing GW150914 with numerical solutions of Einsteins equations for binary black hole coalescence,” Phys. Rev. D94, 064035 (2016d), arXiv:1606.01262 [gr-qc] .
  189. Geoffrey Lovelace et al., “Modeling the source of GW150914 with targeted numerical-relativity simulations,” Class. Quant. Grav. 33, 244002 (2016), arXiv:1607.05377 [gr-qc] .
  190. Jonathan Blackman, Scott E. Field, Mark A. Scheel, Chad R. Galley, Daniel A. Hemberger, Patricia Schmidt,  and Rory Smith, “A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers,” Phys. Rev. D 95, 104023 (2017a), arXiv:1701.00550 [gr-qc] .
  191. Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Lawrence E. Kidder,  and Harald P. Pfeiffer, “Surrogate model of hybridized numerical relativity binary black hole waveforms,” Phys. Rev. D 99, 064045 (2019a), arXiv:1812.07865 [gr-qc] .
  192. Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Davide Gerosa, Leo C. Stein, Lawrence E. Kidder,  and Harald P. Pfeiffer, “Surrogate models for precessing binary black hole simulations with unequal masses,” Phys. Rev. Research. 1, 033015 (2019b), arXiv:1905.09300 [gr-qc] .
  193. Jooheon Yoo, Vijay Varma, Matthew Giesler, Mark A. Scheel, Carl-Johan Haster, Harald P. Pfeiffer, Lawrence E. Kidder,  and Michael Boyle, “Targeted large mass ratio numerical relativity surrogate waveform model for GW190814,” Phys. Rev. D 106, 044001 (2022), arXiv:2203.10109 [gr-qc] .
  194. Christoph Dlapa, Gregor Kälin, Zhengwen Liu,  and Rafael A. Porto, “Local-in-time Conservative Binary Dynamics at Fourth Post-Minkowskian Order,”   (2024), arXiv:2403.04853 [hep-th] .
  195. Enrico Herrmann, Julio Parra-Martinez, Michael S. Ruf,  and Mao Zeng, “Gravitational Bremsstrahlung from Reverse Unitarity,” Phys. Rev. Lett. 126, 201602 (2021a), arXiv:2101.07255 [hep-th] .
  196. Enrico Herrmann, Julio Parra-Martinez, Michael S. Ruf,  and Mao Zeng, “Radiative classical gravitational observables at 𝒪𝒪\mathcal{O}caligraphic_O(G3) from scattering amplitudes,” JHEP 10, 148 (2021b), arXiv:2104.03957 [hep-th] .
  197. Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo,  and Gabriele Veneziano, “The eikonal approach to gravitational scattering and radiation at 𝒪𝒪\mathcal{O}caligraphic_O(G3),” JHEP 07, 169 (2021), arXiv:2104.03256 [hep-th] .
  198. Carlo Heissenberg, “Infrared divergences and the eikonal exponentiation,” Phys. Rev. D 104, 046016 (2021), arXiv:2105.04594 [hep-th] .
  199. N. Emil J. Bjerrum-Bohr, Poul H. Damgaard, Ludovic Planté,  and Pierre Vanhove, “The amplitude for classical gravitational scattering at third Post-Minkowskian order,” JHEP 08, 172 (2021), arXiv:2105.05218 [hep-th] .
  200. Poul H. Damgaard, Ludovic Plante,  and Pierre Vanhove, “On an exponential representation of the gravitational S-matrix,” JHEP 11, 213 (2021), arXiv:2107.12891 [hep-th] .
  201. Stavros Mougiakakos, Massimiliano Maria Riva,  and Filippo Vernizzi, “Gravitational Bremsstrahlung in the post-Minkowskian effective field theory,” Phys. Rev. D 104, 024041 (2021), arXiv:2102.08339 [gr-qc] .
  202. Aneesh V. Manohar, Alexander K. Ridgway,  and Chia-Hsien Shen, “Radiated Angular Momentum and Dissipative Effects in Classical Scattering,” Phys. Rev. Lett. 129, 121601 (2022), arXiv:2203.04283 [hep-th] .
  203. Christoph Dlapa, Gregor Kälin, Zhengwen Liu, Jakob Neef,  and Rafael A. Porto, “Radiation Reaction and Gravitational Waves at Fourth Post-Minkowskian Order,” Phys. Rev. Lett. 130, 101401 (2023b), arXiv:2210.05541 [hep-th] .
  204. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,  and Jan Steinhoff, “Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory,” Phys. Rev. Lett. 126, 201103 (2021), arXiv:2101.12688 [gr-qc] .
  205. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,  and Jan Steinhoff, “Gravitational Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies,” Phys. Rev. Lett. 128, 011101 (2022c), arXiv:2106.10256 [hep-th] .
  206. Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,  and Benjamin Sauer, “Dissipative Scattering of Spinning Black Holes at Fourth Post-Minkowskian Order,” Phys. Rev. Lett. 131, 241402 (2023b), arXiv:2308.11514 [hep-th] .
  207. Parameswaran Ajith et al., “Phenomenological template family for black-hole coalescence waveforms,” Class. Quant. Grav. 24, S689–S700 (2007), arXiv:0704.3764 [gr-qc] .
  208. Geraint Pratten et al., “Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes,” Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
  209. Héctor Estellés, Marta Colleoni, Cecilio García-Quirós, Sascha Husa, David Keitel, Maite Mateu-Lucena, Maria de Lluc Planas,  and Antoni Ramos-Buades, “New twists in compact binary waveform modeling: A fast time-domain model for precession,” Phys. Rev. D 105, 084040 (2022), arXiv:2105.05872 [gr-qc] .
  210. Jonathan Blackman, Scott E. Field, Mark A. Scheel, Chad R. Galley, Christian D. Ott, Michael Boyle, Lawrence E. Kidder, Harald P. Pfeiffer,  and Béla Szilágyi, “Numerical relativity waveform surrogate model for generically precessing binary black hole mergers,” Phys. Rev. D 96, 024058 (2017b), arXiv:1705.07089 [gr-qc] .
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com