Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Testing eccentric corrections to the radiation-reaction force in the test-mass limit of effective-one-body models (2405.19006v2)

Published 29 May 2024 in gr-qc

Abstract: In this work, we test an effective-one-body radiation-reaction force for eccentric planar orbits of a test mass in a Kerr background, which contains third-order post-Newtonian (PN) non-spinning and second-order PN spin contributions. We compare the analytical fluxes connected to two different resummations of this force, truncated at different PN orders in the eccentric sector, with the numerical fluxes computed through the use of frequency- and time-domain Teukolsky-equation codes. We find that the different PN truncations of the radiation-reaction force show the expected scaling in the weak gravitational-field regime, and we observe a fractional difference with the numerical fluxes that is $<5 \%$, for orbits characterized by eccentricity $0 \le e \le 0.7$, central black-hole spin $-0.99 M \le a \le 0.99 M$ and fixed orbital-averaged quantity $x=\langle M\Omega \rangle{2/3} = 0.06$, corresponding to the mildly strong-field regime with semilatera recta $9 M<p<17 M$. Our analysis provides useful information for the development of spin-aligned eccentric models in the comparable-mass case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  2. R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
  3. R. Abbott et al. (LIGO Scientific, VIRGO), GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, -  (2021b), arXiv:2108.01045 [gr-qc] .
  4. M. Punturo et al., The einstein telescope: a third-generation gravitational wave observatory, Classical and Quantum Gravity 27, 194002 (2010).
  5. P. Amaro-Seoane et al., Laser interferometer space antenna (2017).
  6. S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
  7. B. P. Abbott et al. (LIGO Scientific), Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, Class. Quant. Grav. 34, 044001 (2017), arXiv:1607.08697 [astro-ph.IM] .
  8. P. C. Peters and J. Mathews, Gravitational radiation from point masses in a Keplerian orbit, Phys. Rev. 131, 435 (1963).
  9. P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964).
  10. I. Mandel and R. O’Shaughnessy, Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors, Class. Quant. Grav. 27, 114007 (2010), arXiv:0912.1074 [astro-ph.HE] .
  11. C. L. Rodriguez and A. Loeb, Redshift Evolution of the Black Hole Merger Rate from Globular Clusters, Astrophys. J. Lett. 866, L5 (2018), arXiv:1809.01152 [astro-ph.HE] .
  12. G. Fragione and B. Kocsis, Black hole mergers from an evolving population of globular clusters, Phys. Rev. Lett. 121, 161103 (2018), arXiv:1806.02351 [astro-ph.GA] .
  13. Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity, Astron. J. 67, 591 (1962).
  14. M. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies, Planetary and Space Science 9, 719 (1962).
  15. J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, The Formation of Eccentric Compact Binary Inspirals and the Role of Gravitational Wave Emission in Binary-Single Stellar Encounters, Astrophys. J. 784, 71 (2014), arXiv:1308.2964 [astro-ph.HE] .
  16. S. F. Portegies Zwart and S. McMillan, Black hole mergers in the universe, Astrophys. J. Lett. 528, L17 (2000), arXiv:astro-ph/9910061 .
  17. M. C. Miller and D. P. Hamilton, Production of intermediate-mass black holes in globular clusters, Mon. Not. Roy. Astron. Soc. 330, 232 (2002), arXiv:astro-ph/0106188 .
  18. I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Searching for Eccentricity: Signatures of Dynamical Formation in the First Gravitational-Wave Transient Catalogue of LIGO and Virgo, Mon. Not. Roy. Astron. Soc. 490, 5210 (2019), arXiv:1909.05466 [astro-ph.HE] .
  19. I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Signs of Eccentricity in Two Gravitational-wave Signals May Indicate a Subpopulation of Dynamically Assembled Binary Black Holes, Astrophys. J. Lett. 921, L31 (2021), arXiv:2108.01284 [astro-ph.HE] .
  20. I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Four Eccentric Mergers Increase the Evidence that LIGO–Virgo–KAGRA’s Binary Black Holes Form Dynamically, Astrophys. J. 940, 171 (2022), arXiv:2206.14695 [astro-ph.HE] .
  21. H. L. Iglesias et al., Reassessing candidate eccentric binary black holes: Results with a model including higher-order modes, -  (2022), arXiv:2208.01766 [gr-qc] .
  22. A. Ramos-Buades, A. Buonanno, and J. Gair, Bayesian inference of binary black holes with inspiral-merger-ringdown waveforms using two eccentric parameters, Phys. Rev. D 108, 124063 (2023), arXiv:2309.15528 [gr-qc] .
  23. A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091 .
  24. A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62, 064015 (2000), arXiv:gr-qc/0001013 .
  25. T. Damour, B. R. Iyer, and A. Nagar, Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries, Phys. Rev. D 79, 064004 (2009), arXiv:0811.2069 [gr-qc] .
  26. A. Taracchini et al., Effective-one-body model for black-hole binaries with generic mass ratios and spins, Phys. Rev. D 89, 061502 (2014a), arXiv:1311.2544 [gr-qc] .
  27. A. Bohé et al., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev. D 95, 044028 (2017), arXiv:1611.03703 [gr-qc] .
  28. A. Nagar et al., Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects, Phys. Rev. D 98, 104052 (2018), arXiv:1806.01772 [gr-qc] .
  29. S. Ossokine et al., Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation, Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
  30. A. Nagar and P. Rettegno, Efficient effective one body time-domain gravitational waveforms, Phys. Rev. D 99, 021501 (2019), arXiv:1805.03891 [gr-qc] .
  31. L. Pompili et al., Laying the foundation of the effective-one-body waveform models SEOBNRv5: Improved accuracy and efficiency for spinning nonprecessing binary black holes, Phys. Rev. D 108, 124035 (2023), arXiv:2303.18039 [gr-qc] .
  32. D. Bini and T. Damour, Gravitational radiation reaction along general orbits in the effective one-body formalism, Phys. Rev. D 86, 124012 (2012), arXiv:1210.2834 [gr-qc] .
  33. T. Hinderer and S. Babak, Foundations of an effective-one-body model for coalescing binaries on eccentric orbits, Phys. Rev. D 96, 104048 (2017), arXiv:1707.08426 [gr-qc] .
  34. Z. Cao and W.-B. Han, Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism, Phys. Rev. D 96, 044028 (2017), arXiv:1708.00166 [gr-qc] .
  35. X. Liu, Z. Cao, and L. Shao, Validating the Effective-One-Body Numerical-Relativity Waveform Models for Spin-aligned Binary Black Holes along Eccentric Orbits, Phys. Rev. D 101, 044049 (2020), arXiv:1910.00784 [gr-qc] .
  36. X. Liu, Z. Cao, and Z.-H. Zhu, A higher-multipole gravitational waveform model for an eccentric binary black holes based on the effective-one-body-numerical-relativity formalism, Class. Quant. Grav. 39, 035009 (2022), arXiv:2102.08614 [gr-qc] .
  37. X. Liu, Z. Cao, and L. Shao, Upgraded waveform model of eccentric binary black hole based on effective-one-body-numerical-relativity for spin-aligned binary black holes, Int. J. Mod. Phys. D 32, 2350015 (2023), arXiv:2306.15277 [gr-qc] .
  38. S. Albanesi, A. Nagar, and S. Bernuzzi, Effective one-body model for extreme-mass-ratio spinning binaries on eccentric equatorial orbits: Testing radiation reaction and waveform, Phys. Rev. D 104, 024067 (2021), arXiv:2104.10559 [gr-qc] .
  39. M. Boyle et al., The SXS Collaboration catalog of binary black hole simulations, Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
  40. The SXS binary black hole simulations catalog, https://data.black-holes.org/waveforms.
  41. A. Gamboa et al., In preparation,  .
  42. A. Nagar and P. Rettegno, Next generation: Impact of high-order analytical information on effective one body waveform models for noncircularized, spin-aligned black hole binaries, Phys. Rev. D 104, 104004 (2021), arXiv:2108.02043 [gr-qc] .
  43. A. Nagar, T. Damour, and A. Tartaglia, Binary black hole merger in the extreme mass ratio limit, Class. Quant. Grav. 24, S109 (2007), arXiv:gr-qc/0612096 .
  44. T. Damour and A. Nagar, Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries, Phys. Rev. D 76, 064028 (2007), arXiv:0705.2519 [gr-qc] .
  45. S. A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185, 635 (1973).
  46. M. van de Meent and A. G. Shah, Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole, Phys. Rev. D 92, 064025 (2015), arXiv:1506.04755 [gr-qc] .
  47. P. A. Sundararajan, G. Khanna, and S. A. Hughes, Towards adiabatic waveforms for inspiral into Kerr black holes. I. A New model of the source for the time domain perturbation equation, Phys. Rev. D 76, 104005 (2007), arXiv:gr-qc/0703028 .
  48. T. Damour and A. Nagar, Comparing Effective-One-Body gravitational waveforms to accurate numerical data, Phys. Rev. D 77, 024043 (2008), arXiv:0711.2628 [gr-qc] .
  49. S. J. Kapadia, D. Kennefick, and K. Glampedakis, Do floating orbits in extreme mass ratio binary black holes exist?, Phys. Rev. D 87, 044050 (2013), arXiv:1302.1016 [gr-qc] .
  50. L. Barack and O. Long, Self-force correction to the deflection angle in black-hole scattering: A scalar charge toy model, Phys. Rev. D 106, 104031 (2022), arXiv:2209.03740 [gr-qc] .
  51. Black Hole Perturbation Toolkit, (bhptoolkit.org).
  52. B. R. Iyer and C. M. Will, PostNewtonian gravitational radiation reaction for two-body systems, Phys. Rev. Lett. 70, 113 (1993).
  53. B. R. Iyer and C. M. Will, PostNewtonian gravitational radiation reaction for two-body systems: Nonspinning bodies, Phys. Rev. D 52, 6882 (1995).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.