Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Exploring the transition between Quantum and Classical Mechanics (2405.18564v1)

Published 28 May 2024 in quant-ph

Abstract: We investigate the transition from quantum to classical mechanics using a one-dimensional free particle model. In the classical analysis, we consider the initial positions and velocities of the particle drawn from Gaussian distributions. Since the final position of the particle depends on these initial conditions, convolving the Gaussian distributions associated with these initial conditions gives us the distribution of the final positions. In the quantum scenario, using an initial Gaussian wave packet, the temporal evolution provides the final wave function, and from it, the quantum probability density. We find that the quantum probability density coincides with the classical normal distribution of the particle's final position obtained from the convolution theorem. However, for superpositions of Gaussian distributions, the classical and quantum results deviate due to quantum interference. To address this issue, we propose a novel approach to recover the classical distribution from the quantum one. This approach involves removing the quantum interference effects through truncated Fourier analysis. These results are consistent with modern quantum decoherence theory. This comprehensive analysis enhances our understanding of the classical-quantum correspondence and the mechanisms underlying the emergence of classicality from quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. W. H. Zurek, “Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time,” Physica Scripta, vol. 1998, p. 186, jan 1998.
  2. W. H. Zurek, “Environment-induced superselection rules,” Phys. Rev. D, vol. 26, pp. 1862–1880, Oct 1982.
  3. I. Buluta and F. Nori, “Quantum simulators,” Science, vol. 326, no. 5949, pp. 108–111, 2009.
  4. M. Maamache, A. Khatir, H. Lakehal, and J. R. Choi, “Analyzing generalized coherent states for a free particle,” Scientific Reports, vol. 6, no. 1, p. 30538, 2016.
  5. V. G. Bagrov, D. M. Gitman, and A. Pereira, “Coherent and semiclassical states of a free particle,” Physics-Uspekhi, vol. 57, no. 9, p. 891, 2014.
  6. R. L. Liboff, “The correspondence principle revisited,” Physics Today, vol. 37, pp. 50–55, 02 1984.
  7. A. Royer, “Ehrenfest’s theorem reinterpreted and extended with Wigner’s function,” Foundations of Physics, vol. 22, pp. 727–736, 05 1992.
  8. L. E. Ballentine, Y. Yang, and J. Zibin, “Inadequacy of Ehrenfest’s theorem to characterize the classical regime,” Physical review A, vol. 50, no. 4, p. 2854, 1994.
  9. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, and A. Zeilinger, “Wave–particle duality of c60 molecules,” Nature, vol. 401, no. 6754, pp. 680–682, 1999.
  10. G. Ford and R. O’Connell, “Decoherence without dissipation,” Physics Letters A, vol. 286, no. 2, pp. 87–90, 2001.
  11. D. Gobert, J. von Delft, and V. Ambegaokar, “Comment on “quantum measurement and decoherence”,” Phys. Rev. A, vol. 70, p. 026101, Aug 2004.
  12. L. J. Lindgren, Jussi, “Quantum mechanics can be understood through stochastic optimization on spacetimes,” Scientific Reports, vol. 9, 2019.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com