Universal quantum frequency comb measurements by spectral mode-matching (2405.18454v1)
Abstract: The frequency comb of a multimode interferometer offers exceptional scalability potential for field-encoded quantum information. However, the staple field detection method, homodyne detection, cannot access quantum information in the whole comb because some spectral quadratures (and their asymmetries with respect to the LO) are out of reach. We present here the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source, something that is required for photonic quantum computing and is not possible when using homodyne detection with a pulse-shaped LO. This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect. We derive a complete formalism and propose an implementation by microcavity arrays.
- O. Pfister, “Qubits without qubits,” \JournalTitleScience 383, 264–264 (2024).
- D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” \JournalTitlePhys. Rev. A 64, 012310 (2001).
- N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with continuous-variable cluster states,” \JournalTitlePhys. Rev. Lett. 112, 120504 (2014).
- M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” \JournalTitlePhys. Rev. Lett. 112, 120505 (2014).
- S. Yokoyama, R. Ukai, S. C. Armstrong, et al., “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” \JournalTitleNat. Photon. 7, 982 (2013).
- J.-i. Yoshikawa, S. Yokoyama, T. Kaji, et al., “Invited article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” \JournalTitleAPL Photonics 1, 060801 (2016).
- W. Asavanant, Y. Shiozawa, S. Yokoyama, et al., “Generation of time-domain-multiplexed two-dimensional cluster state,” \JournalTitleScience 366, 373–376 (2019).
- M. V. Larsen, X. Guo, C. R. Breum, et al., “Deterministic generation of a two-dimensional cluster state,” \JournalTitleScience 366, 369–372 (2019).
- A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” \JournalTitleOpt. Expr. 16, 3032–3040 (2008).
- M. Eaton, A. Hossameldin, R. J. Birrittella, et al., “Resolution of 100 photons and quantum generation of unbiased random numbers,” \JournalTitleNature Photonics 17, 106–111 (2023).
- C. Cahall, K. L. Nicolich, N. T. Islam, et al., “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” \JournalTitleOptica 4, 1534–1535 (2017).
- S. Wallentowitz and W. Vogel, “Unbalanced homodyning for quantum state measurements,” \JournalTitlePhys. Rev. A 53, 4528–4533 (1996).
- K. Banaszek and K. Wódkiewicz, “Direct probing of quantum phase space by photon counting,” \JournalTitlePhys. Rev. Lett. 76, 4344 (1996).
- N. Sridhar, R. Shahrokhshahi, A. J. Miller, et al., “Direct measurement of the Wigner function by photon-number-resolving detection,” \JournalTitleJ. Opt. Soc. Am. B 31, B34–B40 (2014).
- R. Nehra, A. Win, M. Eaton, et al., “State-independent quantum state tomography by photon-number-resolving measurements,” \JournalTitleOptica 6, 1356–1360 (2019).
- S. Olivares, A. Allevi, G. Caiazzo, et al., “Quantum tomography of light states by photon-number-resolving detectors,” \JournalTitleNew Journal of Physics 21, 103045 (2019).
- R. Nehra, M. Eaton, C. González-Arciniegas, et al., “Generalized overlap quantum state tomography,” \JournalTitlePhys. Rev. Research 2, 042002 (2020).
- A. I. Lvovsky, R. Ghobadi, A. Chandra, et al., “Observation of micro–macro entanglement of light,” \JournalTitleNat. Phys. 9, 541–544 (2013).
- M. F. Melalkia, T. Gabbrielli, A. Petitjean, et al., “Plug-and-play generation of non-Gaussian states of light at a telecom wavelength,” \JournalTitleOptics Express 30, 45195 (2022).
- Y.-S. Ra, A. Dufour, M. Walschaers, et al., “Non–gaussian quantum states of a multimode light field,” \JournalTitleNature Physics 16, 144–147 (2020).
- B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” \JournalTitlePhys. Rev. X 5, 041017 (2015).
- L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” \JournalTitlePhys. Rev. Lett. 57, 2520 (1986).
- R. E. Slusher, L. W. Hollberg, B. Yurke, et al., “Observation of squeezed states generated by four-wave mixing in an optical cavity,” \JournalTitlePhys. Rev. Lett. 55, 2409 (1985).
- F. A. S. Barbosa, A. S. Coelho, K. N. Cassemiro, et al., “Beyond spectral homodyne detection: Complete quantum measurement of spectral modes of light,” \JournalTitlePhys. Rev. Lett. 111, 200402 (2013).
- F. A. S. Barbosa, A. S. Coelho, L. F. Muñoz MartĂnez, et al., “Hexapartite entanglement in an above-threshold optical parametric oscillator,” \JournalTitlePhys. Rev. Lett. 121, 073601 (2018).
- L. Labonté, O. Alibart, V. D’Auria, et al., “Integrated photonics for quantum communications and metrology,” \JournalTitlePRX Quantum 5, 010101 (2024).
- R. Kögler, G. Rickli, R. Domeneguetti, et al., “Quantum state tomography in a third-order integrated optical parametric oscillator,” \JournalTitleOptics Letters (2024). Received 09 Feb 2024; Accepted 09 May 2024; Posted 09 May 2024.
- E. Gouzien, S. Tanzilli, V. D’Auria, and G. Patera, “Morphing supermodes: a full characterization for enabling multimode quantum optics,” \JournalTitlePhys. Rev. Lett. 125, 103601 (2020).
- E. Gouzien, L. Labonté, J. Etesse, et al., “Hidden and detectable squeezing from microresonators,” \JournalTitlePhys. Rev. Res. 5, 023178 (2023).
- J. L. Miller, “Frequency-dependent squeezing pushes ligo sensitivity to new records,” \JournalTitlePhysics Today 2023, 1116a (2023).
- H. J. Kimble, Y. Levin, A. B. Matsko, et al., “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input andÕor output optics,” \JournalTitlePhys. Rev. D 65, 022002 (2001).
- L. McCuller, C. Whittle, D. Ganapathy, et al., “Frequency-dependent squeezing for advanced ligo,” \JournalTitlePhys. Rev. Lett. 124, 171102 (2020).
- H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states- Part III: Quantum measurements realizable with photoemissive detectors,” \JournalTitleIEEE Trans. Inform. Theory 26, 78 (1980).
- H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” \JournalTitleOpt. Lett. 8, 177 (1983). 8, 345 (1983).
- F. A. S. Barbosa, A. S. Coelho, K. N. Cassemiro, et al., “Quantum state reconstruction of spectral field modes: Homodyne and resonator detection schemes,” \JournalTitlePhys. Rev. A 88, 052113 (2013).
- C. Fabre and N. Treps, “Modes and states in quantum optics,” \JournalTitleRev. Mod. Phys. 92, 035005 (2020).
- O. Pfister, “Continuous-variable quantum computing in the quantum optical frequency comb,” \JournalTitleJournal of Physics B: Atomic, Molecular and Optical Physics 53, 012001 (2020).
- G. Patera, N. Treps, C. Fabre, and G. J. de Valcárcel, “Quantum theory of synchronously pumped type i optical parametric oscillators: generation of multiple, squeezed frequency combs below threshold,” \JournalTitleEur. Phys. J. D 56, 123 (2010).
- Y. K. Chembo, “Quantum dynamics of kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light,” \JournalTitlePhys. Rev. A 93, 033820 (2016).
- A. Christ, K. Laiho, A. Eckstein, et al., “Probing multimode squeezing with correlation functions,” \JournalTitleNew J. Phys. 13, 033027 (2011).
- V. D’Auria, S. Fornaro, A. Porzio, et al., “Full characterization of gaussian bipartite entangled states by a single homodyne detector,” \JournalTitlePhys. Rev. Lett. 102, 020502 (2009).
- J. Laurat, L. Longchambon, C. Fabre, and T. Coudreau, “Experimental investigation of amplitude and phase quantum correlations in a type ii optical parametric oscillator above threshold: from nondegenerate to degenerate operation,” \JournalTitleOpt. Lett. 30, 1177 (2005).
- M. A. Guidry, D. M. Lukin, K. Y. Yang, and J. Vučković, “Multimode squeezing in soliton crystal microcombs,” \JournalTitleOptica 10, 694–701 (2023).
- C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate optical parametric oscillator — application to quantum noise reduction,” \JournalTitleJ. Phys. (Paris) 50 (1989).
- J. Roslund, R. Medeiros de Araújo, S. Jiang, et al., “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” \JournalTitleNat. Photon. 8, 109 (2014).
- C. Fabre, E. Giacobino, A. Heidmann, et al., “Squeezing in detuned degenerate optical parametric oscillators,” \JournalTitleQuantum Optics 2, 159 (1990).
- A. Porzio, C. Altucci, P. Aniello, et al., “Resonances and spectral properties of detuned opo pumped by fluctuating sources,” \JournalTitleAppl.Phys. B 75, 655–665 (2002).
- C. Fabre, M. Pinard, S. Bourzeix, et al., “Quantum-noise reduction using a cavity with a movable mirror,” \JournalTitlePhys. Rev. A 49, 1337 (1994).
- S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” \JournalTitlePhys. Rev. A 49, 4055 (1994).
- J. Junker, D. Wilken, N. Johny, et al., “Frequency-dependent squeezing from a detuned squeezer,” \JournalTitlePhys. Rev. Lett. 129, 033602 (2022).
- R. Yanagimoto, E. Ng, A. Yamamura, et al., “Onset of non-gaussian quantum physics in pulsed squeezing with mesoscopic fields,” \JournalTitleOptica 9, 379 (2022).
- M. Jankowski, R. Yanagimoto, E. Ng, et al., “Ultrafast second-order nonlinear photonics—from classical physics to non-gaussian quantum dynamics,” \JournalTitleAdvances in Optics and Photonics (2024).
- L. F. Buchmann, S. Schreppler, J. Kohler, et al., “Complex squeezing and force measurement beyond the standard quantum limit,” \JournalTitlePhys. Rev. Lett. 117, 030801 (2016).
- C.-K. Li, R. Roberts, and X. Yin, “Decomposition of unitary matrices and quantum gates,” (2013).
- Y. Hu, M. Yu, D. Zhu, et al., “On-chip electro-optic frequency shifters and beam splitters,” \JournalTitleNature 599, 587–593 (2021).
- H.-H. Lu, J. M. Lukens, N. A. Peters, et al., “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” \JournalTitlePhys. Rev. Lett. 120, 030502 (2018).
- M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” \JournalTitlePhys. Rev. Lett. 73, 58–61 (1994).
- W. R. Clements, P. C. Humphreys, B. J. Metcalf, et al., “Optimal design for universal multiport interferometers,” \JournalTitleOptica 3, 1460–1465 (2016).
- I. R. Petersen, “Cascade cavity realization for a class of complex transfer functions arising in coherent quantum feedback control,” \JournalTitleAutomatica 47, 1757–1763 (2011).
- H. I. Nurdin, M. R. James, and A. C. Doherty, “Network synthesis of linear dynamical quantum stochastic systems,” \JournalTitleSIAM Journal on Control and Optimization 48, 2686–2718 (2009).
- B. Dioum, V. D’Auria, and G. Patera, “Hidden quantum correlations in cavity-based quantum optics,” (2024). Draft paper.
- A. Bensemhoun, C. Gonzalez-Arciniegas, O. Pfister, et al., “Multipartite entanglement in bright frequency combs out of microresonators,” \JournalTitlePhysics Letters A 493, 129272 (2024).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.