Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Short-time Fokker-Planck propagator beyond the Gaussian approximation (2405.18381v1)

Published 28 May 2024 in cond-mat.stat-mech, cond-mat.soft, math.PR, and physics.chem-ph

Abstract: We present a perturbation approach to calculate the short-time propagator, or transition density, of the one-dimensional Fokker-Planck equation, to in principle arbitrary order in the time increment. Our approach preserves probability exactly and allows us to evaluate expectation values of analytical observables to in principle arbitrary accuracy; to showcase this, we derive perturbation expansions for the moments of the spatial increment, the finite-time Kramers-Moyal coefficients, and the mean medium entropy production rate. For an explicit multiplicative-noise system with available analytical solution, we validate all our perturbative results. Throughout, we compare our perturbative results to those obtained from the widely used Gaussian approximation of the short-time propagator; we demonstrate that this Gaussian propagator leads to errors that can be many orders of magnitude larger than those resulting from our perturbation approach. Potential applications of our results include parametrizing diffusive stochastic dynamics from observed time series, and sampling path spaces of stochastic trajectories numerically.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Hannes Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer Berlin Heidelberg, Berlin, Heidelberg, 1996) oCLC: 906698554.
  2. Nico G. van Kampen, Stochastic processes in physics and chemistry, 3rd ed., North-Holland personal library (Elsevier, Amsterdam ; Boston, 2007) oCLC: ocm81453662.
  3. Crispin W. Gardiner, Stochastic methods: a handbook for the natural and social sciences, 4th ed., Springer series in synergetics (Springer, Berlin, 2009).
  4. Paul C. Bressloff, Stochastic Processes in Cell Biology, Interdisciplinary Applied Mathematics, Vol. 41 (Springer International Publishing, Cham, 2014).
  5. J. Gladrow, M. Ribezzi-Crivellari, F. Ritort,  and U. F. Keyser, “Experimental evidence of symmetry breaking of transition-path times,” Nature Communications 10, 55 (2019).
  6. Jannes Gladrow, Ulrich F. Keyser, R. Adhikari,  and Julian Kappler, “Experimental Measurement of Relative Path Probabilities and Stochastic Actions,” Physical Review X 11, 031022 (2021).
  7. Alice L. Thorneywork, Jannes Gladrow, Ulrich F. Keyser, Michael E. Cates, Ronojoy Adhikari,  and Julian Kappler, “Resolution dependence of most probable pathways with state-dependent diffusivity,”   (2024), arXiv:2402.01559 [cond-mat, physics:physics].
  8. H. Haken, “Generalized Onsager-Machlup function and classes of path integral solutions of the Fokker-Planck equation and the master equation,” Zeitschrift für Physik B Condensed Matter and Quanta 24, 321–326 (1976).
  9. Robert Graham, “Path integral formulation of general diffusion processes,” Zeitschrift für Physik B Condensed Matter and Quanta 26, 281–290 (1977).
  10. Katharine L. C. Hunt and John Ross, “Path integral solutions of stochastic equations for nonlinear irreversible processes: The uniqueness of the thermodynamic Lagrangian,” The Journal of Chemical Physics 75, 976–984 (1981).
  11. Artur B. Adib, “Stochastic Actions for Diffusive Dynamics: Reweighting, Sampling, and Minimization,” The Journal of Physical Chemistry B 112, 5910–5916 (2008).
  12. Peter Arnold, “Langevin equations with multiplicative noise: Resolution of time discretization ambiguities for equilibrium systems,” Physical Review E 61, 6091–6098 (2000a).
  13. Udo Seifert, “Stochastic thermodynamics, fluctuation theorems, and molecular machines,” Reports on Progress in Physics 75, 126001 (2012), arXiv: 1205.4176.
  14. Ying Tang, Ruoshi Yuan,  and Ping Ao, “Summing over trajectories of stochastic dynamics with multiplicative noise,” The Journal of Chemical Physics 141, 044125 (2014).
  15. Carson C. Chow and Michael A. Buice, “Path Integral Methods for Stochastic Differential Equations,” The Journal of Mathematical Neuroscience 5, 8 (2015).
  16. Markus F Weber and Erwin Frey, “Master equations and the theory of stochastic path integrals,” Reports on Progress in Physics 80, 046601 (2017).
  17. Leticia F Cugliandolo and Vivien Lecomte, “Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager–Machlup approach,” Journal of Physics A: Mathematical and Theoretical 50, 345001 (2017).
  18. Leticia F Cugliandolo, Vivien Lecomte,  and Frédéric van Wijland, “Building a path-integral calculus: a covariant discretization approach,” Journal of Physics A: Mathematical and Theoretical 52, 50LT01 (2019).
  19. Thibaut Arnoulx De Pirey, Leticia F. Cugliandolo, Vivien Lecomte,  and Frédéric Van Wijland, “Path integrals and stochastic calculus,” Advances in Physics 71, 1–85 (2023).
  20. D. Dacunha-Castelle and D. Florens-Zmirou, “Estimation of the coefficients of a diffusion from discrete observations,” Stochastics 19, 263–284 (1986).
  21. Ola Elerian, “A note on the existence of a closed form conditional transition density for the Milstein scheme,”   (1998).
  22. Y K Tse, Xibin Zhang,  and Jun Yu, “Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method,” Quantitative Finance 4, 158–169 (2004).
  23. Alexandros Beskos, Gareth Roberts, Andrew Stuart,  and Jochen Voss, “MCMC METHODS FOR DIFFUSION BRIDGES,” Stochastics and Dynamics 08, 319–350 (2008).
  24. Ming Lin, Rong Chen,  and Per Mykland, “On Generating Monte Carlo Samples of Continuous Diffusion Bridges,” Journal of the American Statistical Association 105, 820–838 (2010).
  25. Alain Durmus, Gareth O. Roberts, Gilles Vilmart,  and Konstantinos C. Zygalakis, “Fast Langevin based algorithm for MCMC in high dimensions,” arXiv:1507.02166 [math]  (2016), arXiv: 1507.02166.
  26. Sudipta Bera, Shuvojit Paul, Rajesh Singh, Dipanjan Ghosh, Avijit Kundu, Ayan Banerjee,  and R. Adhikari, “Fast Bayesian inference of optical trap stiffness and particle diffusion,” Scientific Reports 7, 41638 (2017).
  27. Susanne Pieschner and Christiane Fuchs, “Bayesian inference for diffusion processes: using higher-order approximations for transition densities,” Royal Society Open Science 7, 200270 (2020).
  28. Hiroshi Fujisaki, Motoyuki Shiga,  and Akinori Kidera, “Onsager–Machlup action-based path sampling and its combination with replica exchange for diffusive and multiple pathways,” The Journal of Chemical Physics 132, 134101 (2010).
  29. Hiroshi Fujisaki, Motoyuki Shiga, Kei Moritsugu,  and Akinori Kidera, “Multiscale enhanced path sampling based on the Onsager-Machlup action: Application to a model polymer,” The Journal of Chemical Physics 139, 054117 (2013).
  30. M I Dykman and M A Krivoglaz, “Theory of fluctuational transitions between stable states of a nonlinear oscillator,” Journal of Experimental and Theoretical Physics , 8 (1979).
  31. M. I. Dykman, P. V. E. McClintock, V. N. Smelyanski, N. D. Stein,  and N. G. Stocks, “Optimal paths and the prehistory problem for large fluctuations in noise-driven systems,” Physical Review Letters 68, 2718–2721 (1992).
  32. Christian Maes and Karel Netočný, “Time-Reversal and Entropy,” Journal of Statistical Physics 110, 269–310 (2003).
  33. Udo Seifert, “Entropy production along a stochastic trajectory and an integral fluctuation theorem,” Physical Review Letters 95, 040602 (2005), arXiv: cond-mat/0503686.
  34. Michael E. Cates, Étienne Fodor, Tomer Markovich, Cesare Nardini,  and Elsen Tjhung, “Stochastic Hydrodynamics of Complex Fluids: Discretisation and Entropy Production,” Entropy 24, 254 (2022).
  35. Miguel V. Moreno, Daniel G. Barci,  and Zochil González Arenas, “Conditional probabilities in multiplicative noise processes,” Physical Review E 99, 032125 (2019).
  36. Alexander N. Drozdov, “Exponential power series expansion for the propagator of general diffusion processes,” Physica A: Statistical Mechanics and its Applications 196, 283–312 (1993a).
  37. Alexander N. Drozdov, “An accurate power series expansion for path integrals on curved manifolds,” Zeitschrift für Physik B Condensed Matter 90, 241–245 (1993b).
  38. Alexander N. Drozdov, “High-accuracy discrete path integral solutions for stochastic processes with noninvertible diffusion matrices,” Physical Review E 55, 2496–2508 (1997a).
  39. Alexander N. Drozdov, “High-accuracy discrete path integral solutions for stochastic processes with noninvertible diffusion matrices. II. Numerical evaluation,” The Journal of Chemical Physics 107, 3505–3520 (1997b).
  40. Yacine Aït-Sahalia, “Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach,” Econometrica 70, 223–262 (2002).
  41. Yacine Aït-Sahalia, “Closed-form likelihood expansions for multivariate diffusions,” The Annals of Statistics 36 (2008), 10.1214/009053607000000622.
  42. Benjamin Sorkin, Gil Ariel,  and Tomer Markovich, “Consistent expansion of the Langevin propagator with application to entropy production,”  (2024), arXiv:2405.13855 [cond-mat].
  43. Peter E. Kloeden and Eckhard Platen, Numerical Solution of Stochastic Differential Equations (Springer Berlin Heidelberg, Berlin, Heidelberg, 1992).
  44. Julian Kappler, “Python module for (symbolic) evaluation of the short-time fokker-planck propagator to arbitrary accuracy, https://github.com/juliankappler/pystfp,” .
  45. Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman,  and Anthony Scopatz, “Sympy: symbolic computing in python,” PeerJ Computer Science 3, e103 (2017).
  46. L. Onsager and S. Machlup, “Fluctuations and Irreversible Processes,” Physical Review 91, 1505–1512 (1953).
  47. Peter Arnold, “Symmetric path integrals for stochastic equations with multiplicative noise,” Physical Review E 61, 6099–6102 (2000b).
  48. Sadri Hassani, Mathematical methods: for students of physics and related fields, 2nd ed. (Springer, New York, NY, 2009).
  49. Julian Kappler and Ronojoy Adhikari, “Stochastic action for tubes: Connecting path probabilities to measurement,” Physical Review Research 2 (2020a), 10.1103/PhysRevResearch.2.023407.
  50. Julian Kappler and Ronojoy Adhikari, “Sojourn probabilities in tubes and pathwise irreversibility for It\^o processes,” arXiv:2009.04250 [cond-mat, physics:physics]  (2020b), arXiv: 2009.04250.
  51. R. F. Pawula, “Approximation of the Linear Boltzmann Equation by the Fokker-Planck Equation,” Physical Review 162, 186–188 (1967).
  52. R. Friedrich, Ch. Renner, M. Siefert,  and J. Peinke, “Comment on “Indispensable Finite Time Corrections for Fokker-Planck Equations from Time Series Data”,” Physical Review Letters 89, 149401 (2002).
  53. Julia Gottschall and Joachim Peinke, “On the definition and handling of different drift and diffusion estimates,” New Journal of Physics 10, 083034 (2008).
  54. Leonardo Rydin Gorjão, Dirk Witthaut, Klaus Lehnertz,  and Pedro G. Lind, “Arbitrary-Order Finite-Time Corrections for the Kramers–Moyal Operator,” Entropy 23, 517 (2021).
  55. Udo Seifert, “From Stochastic Thermodynamics to Thermodynamic Inference,” Annual Review of Condensed Matter Physics 10, 171–192 (2019).
  56. Ken Sekimoto, Stochastic energetics, Lecture notes in physics No. 799 (Springer, Heidelberg ; New York, 2010) oCLC: ocn462919832.
  57. Detlef Dürr and Alexander Bach, “The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process,” Communications in Mathematical Physics 60, 153–170 (1978).
  58. Julian Kappler and Ronojoy Adhikari, “Measurement of irreversibility and entropy production via the tubular ensemble,” Physical Review E 105, 044107 (2022).
  59. Stefano Bo, Soon Hoe Lim,  and Ralf Eichhorn, “Functionals in stochastic thermodynamics: how to interpret stochastic integrals,” Journal of Statistical Mechanics: Theory and Experiment 2019, 084005 (2019).
  60. Julian Kappler and Ronojoy Adhikari, “Irreversibility and entropy production along paths as a difference of tubular exit rates,” arXiv:2007.11639 [cond-mat, physics:physics]  (2020c), arXiv: 2007.11639.
  61. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,  and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, 261–272 (2020).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Youtube Logo Streamline Icon: https://streamlinehq.com