Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Revisiting the decoupling limit of the Georgi-Machacek model with a scalar singlet (2405.18332v2)

Published 28 May 2024 in hep-ph

Abstract: We study the connection between collider and dark matter phenomenology in the singlet extension of the Georgi-Machacek model. In this framework, the singlet scalar serves as a suitable thermal dark matter (DM) candidate. Our focus lies on the region $v_{\chi}<1$ GeV, where $v_{\chi}$ is the common vacuum expectation value of the neutral components of the scalar triplets of the model. Setting bounds on the model parameters from theoretical, electroweak precision and LHC experimental constraints, we find that the BSM Higgs sector is highly constrained. Allowed values for the masses of the custodial fiveplets, triplets and singlet are restricted to the range $140~ {\rm GeV }< M_{H_5} < 350~ {\rm GeV }$, $150~ {\rm GeV }< M_{H_3} < 270 ~{\rm GeV }$ and $145~ {\rm GeV }< M_{H} < 300~ {\rm GeV }$. The extended scalar sector provides new channels for DM annihilation into BSM scalars that allow to satisfy the observed relic density constraint while being consistent with direct DM detection limits. The allowed region of the parameter space of the model can be explored in the upcoming DM detection experiments, both direct and indirect. In particular, the possible high values of BR$(H0_5\to\gamma\gamma)$ can lead to an indirect DM signal within the reach of CTA. The same feature also provides the possibility of exploring the model at the High-Luminosity run of the LHC. In a simple cut-based analysis, we find that a signal of about $4\sigma$ significance can be achieved in final states with at least two photons for one of our benchmark points.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30 (2012), arXiv:1207.7235 [hep-ex] .
  2. G. Aad et al. (ATLAS), Phys. Lett. B 716, 1 (2012), arXiv:1207.7214 [hep-ex] .
  3. H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985).
  4. M. S. Chanowitz and M. Golden, Phys. Lett. B 165, 105 (1985).
  5. H. E. Haber and H. E. Logan, Phys. Rev. D 62, 015011 (2000), arXiv:hep-ph/9909335 .
  6. M. Aoki and S. Kanemura, Phys. Rev. D 77, 095009 (2008), [Erratum: Phys.Rev.D 89, 059902 (2014)], arXiv:0712.4053 [hep-ph] .
  7. H. E. Logan and M.-A. Roy, Phys. Rev. D 82, 115011 (2010), arXiv:1008.4869 [hep-ph] .
  8. C.-W. Chiang and K. Yagyu, JHEP 01, 026 (2013), arXiv:1211.2658 [hep-ph] .
  9. A. Efrati and Y. Nir,   (2014), arXiv:1401.0935 [hep-ph] .
  10. Z. Bairi and A. Ahriche, Phys. Rev. D 108, 055028 (2023), arXiv:2207.00142 [hep-ph] .
  11. V. Silveira and A. Zee, Phys. Lett. B 161, 136 (1985).
  12. J. McDonald, Phys. Rev. D 50, 3637 (1994), arXiv:hep-ph/0702143 .
  13. P. Athron et al. (GAMBIT), Eur. Phys. J. C 77, 568 (2017), arXiv:1705.07931 [hep-ph] .
  14. D. Das and I. Saha, Phys. Rev. D 98, 095010 (2018), arXiv:1811.00979 [hep-ph] .
  15. A. Ahriche, Phys. Rev. D 107, 015006 (2023), arXiv:2212.11579 [hep-ph] .
  16. G. Aad et al. (ATLAS), JHEP 07, 088 (2023), arXiv:2207.00348 [hep-ex] .
  17. A. M. Sirunyan et al. (CMS), JHEP 07, 027 (2021), arXiv:2103.06956 [hep-ex] .
  18. G. Aad et al. (ATLAS), JHEP 06, 146 (2021a), arXiv:2101.11961 [hep-ex] .
  19. A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 081801 (2018), arXiv:1709.05822 [hep-ex] .
  20. M. Aaboud et al. (ATLAS), Eur. Phys. J. C 79, 58 (2019), arXiv:1808.01899 [hep-ex] .
  21. G. Aad et al. (ATLAS), Phys. Lett. B 822, 136651 (2021b), arXiv:2102.13405 [hep-ex] .
  22. P. Gondolo and G. Gelmini, Nucl. Phys. B 360, 145 (1991).
  23. E. W. Kolb and M. S. Turner, The Early Universe, Vol. 69 (1990).
  24. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  25. W.-L. Guo and Y.-L. Wu, JHEP 10, 083 (2010), arXiv:1006.2518 [hep-ph] .
  26. C. Armand and B. Herrmann, JCAP 11, 055 (2022), arXiv:2210.01220 [hep-ph] .
  27. A. Pukhov,   (2004), arXiv:hep-ph/0412191 .
  28. J. Aalbers et al. (LZ), Phys. Rev. Lett. 131, 041002 (2023), arXiv:2207.03764 [hep-ex] .
  29. E. Aprile et al. (XENON), JCAP 04, 027 (2016), arXiv:1512.07501 [physics.ins-det] .
  30. J. Aalbers et al. (DARWIN), JCAP 11, 017 (2016), arXiv:1606.07001 [astro-ph.IM] .
  31. M. L. Ahnen et al. (MAGIC, Fermi-LAT), JCAP 02, 039 (2016), arXiv:1601.06590 [astro-ph.HE] .
  32. A. Reinert and M. W. Winkler, JCAP 01, 055 (2018), arXiv:1712.00002 [astro-ph.HE] .
  33. A. Acharyya et al. (CTA), JCAP 01, 057 (2021), arXiv:2007.16129 [astro-ph.HE] .
  34. O. Gueta (CTA Consortium, CTA Observatory), PoS ICRC2021, 885 (2021), arXiv:2108.04512 [astro-ph.IM] .
  35.  https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt14TeV.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com