2000 character limit reached
Quantum $K$-theory of Lagrangian Grassmannian via parabolic Peterson isomorphism (2405.17854v1)
Published 28 May 2024 in math.AG, math.CO, math.KT, and math.RT
Abstract: We study Schubert calculus in the torus-equivariant quantum $K$-ring of the Lagrangian Grassmannian $\mathrm{LG}(n)$. Our main tool is the $K$-theoretic Peterson map due to Kato. The map is from the (localized) equivariant $K$-homology ring $K_{*}{T}(\mathrm{Gr}_{G})$ of the affine Grassmannian $\mathrm{Gr}{G}$ of the symplectic group $G=\mathrm{Sp}{2n}(\mathbb{C})$ to the (localized) torus-equivariant quantum $K$-ring $QK_{T}(\mathrm{LG}(n))$. We determine explicitly the kernel of this map.