Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying Parabolic Peterson: Affine Algebras and the Quantum Cohomology of the Grassmannian (1707.02178v2)

Published 7 Jul 2017 in math.CO and math.AG

Abstract: The Peterson isomorphism relates the homology of the affine Grassmannian to the quantum cohomology of any flag variety. In the case of a partial flag, Peterson's map is only a surjection, and one needs to quotient by a suitable ideal on the affine side to map isomorphically onto the quantum cohomology. We provide a detailed exposition of this parabolic Peterson isomorphism in the case of the Grassmannian of m-planes in complex n-space, including an explicit recipe for doing quantum Schubert calculus in terms of the appropriate subset of non-commutative k-Schur functions. As an application, we recast Postnikov's affine approach to the quantum cohomology of the Grassmannian as a consequence of parabolic Peterson by showing that the affine nilTemperley-Lieb algebra arises naturally when forming the requisite quotient of the homology of the affine Grassmannian.

Summary

We haven't generated a summary for this paper yet.