Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A waveform model for the missing quadrupole mode from black hole coalescence: memory effect and ringdown of the $(\ell=2,m=0)$ spherical harmonic (2405.17302v2)

Published 27 May 2024 in gr-qc

Abstract: In this paper we describe a model for the $(\ell=2, m=0)$ spherical harmonic mode of the gravitational wave signal emitted by the coalescence of binary black holes, in particular, spin-aligned systems. This mode can be viewed as consisting of two components, gravitational wave memory and quasi-normal ringdown, which are both included in our model. Depending on the parameters of the binary and the sensitivity curve of the detector, but in particular for high masses, the ringdown part can contribute significantly to the signal-to-noise ratio. The model is constructed using the methods of the phenomenological waveforms program, and is calibrated to public numerical relativity data from the Simulating eXtreme Spacetimes (SXS) waveforms catalog, with the analytical results derived from the Bondi-Metzner-Sachs (BMS) balance laws. The code has been implemented as an extension to the computationally efficient IMRPhenomTHM model, it can therefore be used for computationally expensive applications such as Bayesian parameter estimation. The region of validity of our model in the parameter space is given by: $q\leq10$ and $\chi_{1},\chi_{2}\in[-1,1]$, and no restrictions apply in terms of the length of the waveforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011), arXiv:0909.2867 [gr-qc] .
  2. A. Taracchini et al., Phys. Rev. D 89, 061502 (2014), arXiv:1311.2544 [gr-qc] .
  3. M. Punturo et al., Classical and Quantum Gravity 27, 194002 (2010).
  4. D. Reitze et al.,   (2019), arXiv:1907.04833 [astro-ph.IM] .
  5. P. Amaro-Seoane et al., arXiv e-prints , arXiv:1702.00786 (2017), arXiv:1702.00786 [astro-ph.IM] .
  6. A. M. Grant and D. A. Nichols, Phys. Rev. D 107, 064056 (2023), [Erratum: Phys.Rev.D 108, 029901 (2023)], arXiv:2210.16266 [gr-qc] .
  7. J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  8. F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  9. T. Akutsu et al., Progress of Theoretical and Experimental Physics 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
  10. The LIGO Scientific Collaboration and The Virgo Collaboration, Phys. Rev. X 9, 031040 (2019).
  11. The LIGO Scientific Collaboration and The Virgo Collaboration, Phys. Rev. X 11, 021053 (2021).
  12. LIGO Scientific Collaboration, “LIGO Algorithm Library-LALSuite, free sowftware (GPL),” https://doi.org/10.7935/GT1W-FZ16 (2020).
  13. P. A. R. Ade et al., A&A 594, A12 (2016).
  14. Y. B. Zel’dovich and A. G. Polnarev, Astronomicheskii Zhurnal 51, 30 (1974).
  15. L. Blanchet and T. Damour, Phys. Rev. D 46, 4304 (1992).
  16. D. Christodoulou, Phys. Rev. Lett. 67, 1486 (1991).
  17. A. Strominger and A. Zhiboedov,   (2014), arXiv:1411.5745 [hep-th] .
  18. L. Magaña Zertuche et al., Phys. Rev. D 105, 104015 (2022), arXiv:2110.15922 [gr-qc] .
  19. K. Mitman et al., Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
  20. R. M.Wald, General Relativity (The University of Chicago Press, 1984).
  21. J. Frauendiener, Living Rev. Relativ. 3, 4 (2000), 10.12942/lrr-2000-4.
  22. D. Pollney and C. Reisswig, The Astrophysical Journal Letters 732, L13 (2010).
  23. M. Boyle, “sxs-collaboration/sxs: Release v2020.12.0,”  (2020).
  24. M. Favata, The Astrophysical Journal 696, L159–L162 (2009).
  25. SXS Collaboration, “SXS Gravitational Waveform Database,” https://www.black-holes.org/waveforms (2019).
  26. A. Apte and S. A. Hughes, Phys. Rev. D 100, 084031 (2019).
  27. K. Kokkotas and B. Schmidt, Living Rev. Relativ. 2, 2  (1999), 10.12942/lrr-1999-2.
  28. M. Evans, R. Sturani, S. Vitale, E. Hall, “Unofficial sensitivity curves (ASD) for aLIGO, Kagra, Virgo, Voyager, Cosmic Explorer, and Einstein Telescope,” https://dcc.ligo.org/LIGO-T1500293/public (2023).
  29. SXS Collaboration, “SXS Gravitational Waveform Database: The Ext-CCE Waveform Database,” https://data.black-holes.org/waveforms/extcce_catalog.html (2021).
  30. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).
  31. Y. Chen et al.,   (2024), arXiv:2405.06197 [gr-qc] .
  32. M. Ebersold and S. Tiwari, Phys. Rev. D 101, 104041 (2020), arXiv:2005.03306 [gr-qc] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube