Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

The response of the inner dark matter halo to stellar bars (2405.17128v1)

Published 27 May 2024 in astro-ph.GA

Abstract: Barred galaxies constitute about two thirds of observed disc galaxies. Bars affect not only the mass distribution of gas and stars, but also that of the dark matter. An elongation of the inner dark matter halo is known as the halo bar. We aim to characterise the structure of the halo bars, with the goal of correlating them with the properties of the stellar bars. We use a suite of simulated galaxies with various bar strengths, including gas and star formation. We quantify strengths, shapes, and densities of these simulated stellar bars. We carry out numerical experiments with frozen and analytic potentials in order to understand the role played by a live responsive stellar bar. We find that the halo bar generally follows the trends of the disc bar. The strengths of the halo and stellar bars are tightly correlated. Stronger bars induce a slight increase of dark matter density within the inner halo. Numerical experiments show that a non-responsive frozen stellar bar would be capable of inducing a dark matter bar, but it would be weaker than the live case by a factor of roughly two.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. The Frequency of Barred Spiral Galaxies in the Near-Infrared. Astron. J. 2000, 119, 536–544, [arXiv:astro-ph/astro-ph/9910479]. https://doi.org/10.1086/301203.
  2. Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence. Astrophys. J. 2008, 675, 1141–1155, [arXiv:astro-ph/0710.4552]. https://doi.org/10.1086/524980.
  3. On the Fraction of Barred Spiral Galaxies. Astrophys. J. Lett. 2010, 714, L260–L264, [arXiv:astro-ph.CO/1004.0684]. https://doi.org/10.1088/2041-8205/714/2/L260.
  4. García-Barreto, J.A. Fraction of Strong Barred Galaxies (SB) in the Nearby Universe, 0 ≤\leq≤ z ≤\leq≤ 0.066 as a function of redshift. In Proceedings of the Revista Mexicana de Astronomia y Astrofisica Conference Series, 2011, Vol. 40, Revista Mexicana de Astronomia y Astrofisica Conference Series, pp. 120–120, [arXiv:astro-ph.GA/1012.3669]. https://doi.org/10.48550/arXiv.1012.3669.
  5. The Two-phase Formation History of Spiral Galaxies Traced by the Cosmic Evolution of the Bar Fraction. Astrophys. J. 2012, 757, 60, [arXiv:astro-ph.GA/1207.0351]. https://doi.org/10.1088/0004-637X/757/1/60.
  6. Bar Fraction in Early- and Late-type Spirals. Astrophys. J. 2019, 872, 97, [arXiv:astro-ph.GA/1901.05183]. https://doi.org/10.3847/1538-4357/ab0024.
  7. Kormendy, J. A morphological survey of bar, lens, and ring components in galaxies: secular evolution in galaxy structure. Astrophys. J. 1979, 227, 714–728. https://doi.org/10.1086/156782.
  8. Do Bars Drive Spiral Density Waves? Astron. J. 2009, 137, 4487–4516, [arXiv:astro-ph.CO/0903.2008]. https://doi.org/10.1088/0004-6256/137/5/4487.
  9. Quantifying the role of bars in the build-up of central mass concentrations in disc galaxies. Mon. Not. R. Astron. Soc. 2012, 423, 3486–3501, [arXiv:astro-ph.CO/1205.0932]. https://doi.org/10.1111/j.1365-2966.2012.21147.x.
  10. Quantifying the (X/peanut)-shaped structure of the Milky Way - new constraints on the bar geometry. Mon. Not. R. Astron. Soc. 2017, 471, 3988–4004, [arXiv:astro-ph.GA/1706.09902]. https://doi.org/10.1093/mnras/stx1823.
  11. The intrinsic three-dimensional shape of galactic bars. Mon. Not. R. Astron. Soc. 2018, 479, 4172–4186, [arXiv:astro-ph.GA/1805.09481]. https://doi.org/10.1093/mnras/sty1694.
  12. First Gaia dynamical model of the Milky Way disc with six phase space coordinates: a test for galaxy dynamics. Mon. Not. R. Astron. Soc. 2020, 494, 6001–6011, [arXiv:astro-ph.GA/1909.05269]. https://doi.org/10.1093/mnras/staa1128.
  13. Gadotti, D.A. Secular evolution and structural properties of stellar bars in galaxies. Mon. Not. R. Astron. Soc. 2011, 415, 3308–3318, [arXiv:astro-ph.CO/1003.1719]. https://doi.org/10.1111/j.1365-2966.2011.18945.x.
  14. Relations among structural parameters in barred galaxies with a direct measurement of bar pattern speed. Astron. Astrophys. 2020, 641, A111, [arXiv:astro-ph.GA/2003.07455]. https://doi.org/10.1051/0004-6361/202037945.
  15. The impact of gas inflows on star formation rates and metallicities in barred galaxies. Mon. Not. R. Astron. Soc. 2011, 416, 2182–2192, [arXiv:astro-ph.CO/1106.1177]. https://doi.org/10.1111/j.1365-2966.2011.19195.x.
  16. Galaxy Zoo and ALFALFA: atomic gas and the regulation of star formation in barred disc galaxies. Mon. Not. R. Astron. Soc. 2012, 424, 2180–2192, [arXiv:astro-ph.CO/1205.5271]. https://doi.org/10.1111/j.1365-2966.2012.21377.x.
  17. Galaxy Zoo: Observing Secular Evolution through Bars. Astrophys. J. 2013, 779, 162, [arXiv:astro-ph.CO/1310.2941]. https://doi.org/10.1088/0004-637X/779/2/162.
  18. Secular evolution in action: central values and radial trends in the stellar populations of boxy bulges. Mon. Not. R. Astron. Soc. 2012, 427, L99–L103, [arXiv:astro-ph.CO/1209.3167]. https://doi.org/10.1111/j.1745-3933.2012.01353.x.
  19. Linking bar- and interaction-driven molecular gas concentration with centrally enhanced star formation in EDGE-CALIFA galaxies. Mon. Not. R. Astron. Soc. 2019, 484, 5192–5211, [arXiv:astro-ph.GA/1810.08624]. https://doi.org/10.1093/mnras/stz349.
  20. Comparison of Bar Strengths and Fractions of Bars in Active and Nonactive Galaxies. Astrophys. J. 2004, 607, 103–124, [arXiv:astro-ph/astro-ph/0111376]. https://doi.org/10.1086/383462.
  21. Athanassoula, E. Evolution of Bars in Isolated and in Interacting Disk Galaxies. In Proceedings of the IAU Colloq. 157: Barred Galaxies; Buta, R.; Crocker, D.A.; Elmegreen, B.G., Eds., 1996, Vol. 91, Astronomical Society of the Pacific Conference Series, p. 309.
  22. Dynamical Friction in Barred Galaxies. In Proceedings of the IAU Colloq. 157: Barred Galaxies; Buta, R.; Crocker, D.A.; Elmegreen, B.G., Eds., 1996, Vol. 91, Astronomical Society of the Pacific Conference Series, p. 357.
  23. Dynamical Friction and the Distribution of Dark Matter in Barred Galaxies. Astrophys. J. Lett. 1998, 493, L5–L8, [arXiv:astro-ph/astro-ph/9710039]. https://doi.org/10.1086/311118.
  24. Gas-driven evolution of stellar orbits in barred galaxies. Mon. Not. R. Astron. Soc. 1998, 300, 49–63, [arXiv:astro-ph/astro-ph/9806138]. https://doi.org/10.1046/j.1365-8711.1998.01836.x.
  25. Constraints from Dynamical Friction on the Dark Matter Content of Barred Galaxies. Astrophys. J. 2000, 543, 704–721, [arXiv:astro-ph/astro-ph/0006275]. https://doi.org/10.1086/317148.
  26. Morphology, photometry and kinematics of N -body bars - I. Three models with different halo central concentrations. Mon. Not. R. Astron. Soc. 2002, 330, 35–52, [arXiv:astro-ph/astro-ph/0111449]. https://doi.org/10.1046/j.1365-8711.2002.05028.x.
  27. Athanassoula, E. What determines the strength and the slowdown rate of bars? Mon. Not. R. Astron. Soc. 2003, 341, 1179–1198, [arXiv:astro-ph/astro-ph/0302519]. https://doi.org/10.1046/j.1365-8711.2003.06473.x.
  28. Warps and Bars from the External Tidal Torques of Tumbling Dark Halos. Astrophys. J. 2009, 703, 2068–2081, [arXiv:astro-ph.GA/0908.0168]. https://doi.org/10.1088/0004-637X/703/2/2068.
  29. Dark Matter Halos and Evolution of Bars in Disk Galaxies: Varying Gas Fraction and Gas Spatial Resolution. Astrophys. J. 2010, 719, 1470–1480, [arXiv:astro-ph.CO/1004.4899]. https://doi.org/10.1088/0004-637X/719/2/1470.
  30. The effects of Boxy/Peanut bulges on galaxy models. Mon. Not. R. Astron. Soc. 2015, 450, 229–245, [arXiv:astro-ph.GA/1503.03068]. https://doi.org/10.1093/mnras/stv537.
  31. Separation of stellar populations by an evolving bar: implications for the bulge of the Milky Way. Mon. Not. R. Astron. Soc. 2017, 469, 1587–1611, [arXiv:astro-ph.GA/1611.09023]. https://doi.org/10.1093/mnras/stx947.
  32. Bars in dark-matter-dominated dwarf galaxy discs. Mon. Not. R. Astron. Soc. 2018, 476, 2168–2176, [arXiv:astro-ph.GA/1711.09914]. https://doi.org/10.1093/mnras/sty354.
  33. Bar formation and evolution in disc galaxies with gas and a triaxial halo: morphology, bar strength and halo properties. Mon. Not. R. Astron. Soc. 2013, 429, 1949–1969, [arXiv:astro-ph.CO/1211.6754]. https://doi.org/10.1093/mnras/sts452.
  34. Adventures of a tidally induced bar. Mon. Not. R. Astron. Soc. 2014, 445, 1339–1350, [arXiv:astro-ph.GA/1404.1211]. https://doi.org/10.1093/mnras/stu1846.
  35. Bar Formation from Galaxy Flybys. Astrophys. J. Lett. 2014, 790, L33, [arXiv:astro-ph.GA/1405.5832]. https://doi.org/10.1088/2041-8205/790/2/L33.
  36. Tidally Induced Bars of Galaxies in Clusters. Astrophys. J. 2016, 826, 227, [arXiv:astro-ph.GA/1601.07433]. https://doi.org/10.3847/0004-637X/826/2/227.
  37. Łokas, E.L. Formation of Tidally Induced Bars in Galactic Flybys: Prograde versus Retrograde Encounters. Astrophys. J. 2018, 857, 6, [arXiv:astro-ph.GA/1803.09465]. https://doi.org/10.3847/1538-4357/aab4ff.
  38. Tidally Induced Bars in Gas-rich Dwarf Galaxies Orbiting the Milky Way. Astrophys. J. 2018, 868, 100, [arXiv:astro-ph.GA/1807.00674]. https://doi.org/10.3847/1538-4357/aaea61.
  39. The formation and survival of discs in a ΛΛ\Lambdaroman_ΛCDM universe. Mon. Not. R. Astron. Soc. 2009, 396, 696–708, [arXiv:astro-ph/0812.0976]. https://doi.org/10.1111/j.1365-2966.2009.14764.x.
  40. Bars in hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 2012, 425, L10–L14, [arXiv:astro-ph.CO/1206.5308]. https://doi.org/10.1111/j.1745-3933.2012.01291.x.
  41. Barred galaxies in the EAGLE cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 2017, 469, 1054–1064, [arXiv:astro-ph.GA/1609.05909]. https://doi.org/10.1093/mnras/stx1008.
  42. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554, [arXiv:astro-ph.GA/1407.7040]. https://doi.org/10.1093/mnras/stu2058.
  43. The buildup of strongly barred galaxies in the TNG100 simulation. Mon. Not. R. Astron. Soc. 2020, 491, 2547–2564, [arXiv:astro-ph.GA/1908.00547]. https://doi.org/10.1093/mnras/stz3180.
  44. Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 2014, 445, 175–200, [arXiv:astro-ph.CO/1405.3749]. https://doi.org/10.1093/mnras/stu1654.
  45. The Formation of Dark Halos in a Universe Dominated by Cold Dark Matter. Astrophys. J. 1988, 327, 507. https://doi.org/10.1086/166213.
  46. The Structure of Cold Dark Matter Halos. Astrophys. J. 1991, 378, 496. https://doi.org/10.1086/170451.
  47. Dark Halos Formed via Dissipationless Collapse. I. Shapes and Alignment of Angular Momentum. Astrophys. J. 1992, 399, 405. https://doi.org/10.1086/171937.
  48. The structure of dark matter haloes in hierarchical clustering models. Mon. Not. R. Astron. Soc. 1996, 281, 716, [arXiv:astro-ph/astro-ph/9510147]. https://doi.org/10.1093/mnras/281.2.716.
  49. Jing, Y.P. Intrinsic correlation of halo ellipticity and its implications for large-scale weak lensing surveys. Mon. Not. R. Astron. Soc. 2002, 335, L89–L93, [arXiv:astro-ph/astro-ph/0206098]. https://doi.org/10.1046/j.1365-8711.2002.05899.x.
  50. Internal and External Alignment of the Shapes and Angular Momenta of ΛΛ\Lambdaroman_ΛCDM Halos. Astrophys. J. 2005, 627, 647–665, [arXiv:astro-ph/astro-ph/0408163]. https://doi.org/10.1086/430397.
  51. The shape of dark matter haloes: dependence on mass, redshift, radius and formation. Mon. Not. R. Astron. Soc. 2006, 367, 1781–1796, [arXiv:astro-ph/astro-ph/0508497]. https://doi.org/10.1111/j.1365-2966.2006.10094.x.
  52. Shapes of Stellar Systems and Dark Halos from Simulations of Galaxy Major Mergers. Astrophys. J. Lett. 2006, 646, L9–L12, [arXiv:astro-ph/astro-ph/0604121]. https://doi.org/10.1086/506605.
  53. The spin and shape of dark matter haloes in the Millennium simulation of a ΛΛ\Lambdaroman_Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 2007, 376, 215–232, [arXiv:astro-ph/astro-ph/0608607]. https://doi.org/10.1111/j.1365-2966.2007.11432.x.
  54. The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. Mon. Not. R. Astron. Soc. 2015, 453, 721–738, [arXiv:astro-ph.GA/1504.04025]. https://doi.org/10.1093/mnras/stv1690.
  55. Shape of dark matter haloes in the Illustris simulation: effects of baryons. Mon. Not. R. Astron. Soc. 2019, 484, 476–493, [arXiv:astro-ph.GA/1809.07255]. https://doi.org/10.1093/mnras/sty3531.
  56. Growing Live Disks within Cosmologically Assembling Asymmetric Halos: Washing Out the Halo Prolateness. Astrophys. J. 2006, 648, 807–819, [arXiv:astro-ph/astro-ph/0603487]. https://doi.org/10.1086/506016.
  57. Galaxy-induced transformation of dark matter haloes. Mon. Not. R. Astron. Soc. 2010, 407, 435–446, [arXiv:astro-ph.GA/0902.2477]. https://doi.org/10.1111/j.1365-2966.2010.16912.x.
  58. Dark matter response to galaxy formation. Mon. Not. R. Astron. Soc. 2010, 406, 922–935, [arXiv:astro-ph.CO/0911.2316]. https://doi.org/10.1111/j.1365-2966.2010.16777.x.
  59. Loss of halo triaxiality due to bar formation. Mon. Not. R. Astron. Soc. 2010, 406, 2386–2404, [arXiv:astro-ph.CO/1004.3874]. https://doi.org/10.1111/j.1365-2966.2010.16890.x.
  60. Dark matter response to galaxy assembly history. Astron. Astrophys. 2019, 622, A197, [arXiv:astro-ph.CO/1901.02269]. https://doi.org/10.1051/0004-6361/201834096.
  61. Baryons shaping dark matter haloes. Mon. Not. R. Astron. Soc. 2021, 501, 5679–5691, [arXiv:astro-ph.GA/2008.02404]. https://doi.org/10.1093/mnras/staa3988.
  62. Dark matter halo shapes in the Auriga simulations. Mon. Not. R. Astron. Soc. 2019, p. 2477, [arXiv:astro-ph.GA/1910.04045]. https://doi.org/10.1093/mnras/stz2873.
  63. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 2017, 467, 179–207, [arXiv:astro-ph.GA/1610.01159]. https://doi.org/10.1093/mnras/stx071.
  64. Dynamical friction in spherical systems. Mon. Not. R. Astron. Soc. 1984, 209, 729–757. https://doi.org/10.1093/mnras/209.4.729.
  65. Weinberg, M.D. Evolution of barred galaxies by dynamical friction. Mon. Not. R. Astron. Soc. 1985, 213, 451–471. https://doi.org/10.1093/mnras/213.3.451.
  66. Bar-Spheroid Interaction in Galaxies. Astrophys. J. 1992, 400, 80. https://doi.org/10.1086/171975.
  67. Detailed comparison of the structures and kinematics of simulated and observed barred galaxies. Mon. Not. R. Astron. Soc. 2003, 346, 251–264, [arXiv:astro-ph/0305169]. https://doi.org/10.1046/j.1365-2966.2003.07085.x.
  68. Athanassoula, E. Dynamical Evolution of Barred Galaxies. Celestial Mechanics and Dynamical Astronomy 2005, 91, 9–31, [arXiv:astro-ph/astro-ph/0501196]. https://doi.org/10.1007/s10569-004-4947-7.
  69. Bars and Cold Dark Matter Halos. Astrophys. J. 2006, 644, 687–700, [astro-ph/0506627]. https://doi.org/10.1086/503791.
  70. Athanassoula, E. A bar in the inner halo of barred galaxies - I. Structure and kinematics of a representative model. Mon. Not. R. Astron. Soc. 2007, 377, 1569–1578, [arXiv:astro-ph/astro-ph/0703184]. https://doi.org/10.1111/j.1365-2966.2007.11711.x.
  71. Dark matter trapping by stellar bars: the shadow bar. Mon. Not. R. Astron. Soc. 2016, 463, 1952–1967, [arXiv:astro-ph.GA/1602.04826]. https://doi.org/10.1093/mnras/stw2141.
  72. Bar-induced evolution of dark matter cusps. Mon. Not. R. Astron. Soc. 2005, 363, 991–1007, [astro-ph/0306374]. https://doi.org/10.1111/j.1365-2966.2005.09501.x.
  73. The Causes of Halo Shape Changes Induced by Cooling Baryons: Disks versus Substructures. Astrophys. J. 2008, 681, 1076–1088, [0707.0737]. https://doi.org/10.1086/587977.
  74. Halo geometry and dark matter annihilation signal. Phys. Rev. D 2005, 72, 083503, [arXiv:astro-ph/astro-ph/0504631]. https://doi.org/10.1103/PhysRevD.72.083503.
  75. Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons. J. Cosmol. Astropart. Phys. 2010, 2010, 012, [arXiv:astro-ph.GA/0909.2028]. https://doi.org/10.1088/1475-7516/2010/02/012.
  76. Dynamical response of dark matter to galaxy evolution affects direct-detection experiments. Phys. Rev. D 2016, 94, 123013, [arXiv:hep-ph/1609.01307]. https://doi.org/10.1103/PhysRevD.94.123013.
  77. Reconstructing the three-dimensional local dark matter velocity distribution. Phys. Rev. D 2016, 94, 123009, [1609.08630]. https://doi.org/10.1103/PhysRevD.94.123009.
  78. Chaotic motion and the evolution of morphological components in a time-dependent model of a barred galaxy within a dark matter halo. Mon. Not. R. Astron. Soc. 2016, 458, 3578–3591, [arXiv:astro-ph.GA/1603.02294]. https://doi.org/10.1093/mnras/stw572.
  79. 2D kinematic signatures of boxy/peanut bulges. Mon. Not. R. Astron. Soc. 2015, 450, 2514–2538, [arXiv:astro-ph.GA/1504.00010]. https://doi.org/10.1093/mnras/stv764.
  80. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005, 364, 1105–1134, [arXiv:astro-ph/astro-ph/0505010]. https://doi.org/10.1111/j.1365-2966.2005.09655.x.
  81. On the equilibrium morphology of systems drawn from spherical collapse experiments. Mon. Not. R. Astron. Soc. 2006, 369, 608–624, [arXiv:astro-ph/0705.2552]. https://doi.org/10.1111/j.1365-2966.2006.10365.x.
  82. The Distribution of Dark Matter in the Milky Way’s Disk. Astrophys. J. 2014, 784, 161, [arXiv:astro-ph.GA/1308.1703]. https://doi.org/10.1088/0004-637X/784/2/161.
  83. Simulated Milky Way analogues: implications for dark matter direct searches. J. Cosmol. Astropart. Phys. 2016, 2016, 024, [arXiv:astro-ph.CO/1601.04707]. https://doi.org/10.1088/1475-7516/2016/05/024.
  84. The impact of baryons on the direct detection of dark matter. J. Cosmol. Astropart. Phys. 2016, 2016, 071, [arXiv:astro-ph.GA/1601.04725]. https://doi.org/10.1088/1475-7516/2016/08/071.
  85. Assessing Astrophysical Uncertainties in Direct Detection with Galaxy Simulations. Astrophys. J. 2016, 831, 93, [arXiv:astro-ph.GA/1601.05402]. https://doi.org/10.3847/0004-637X/831/1/93.
  86. The fraction of dark matter within galaxies from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 2018, 481, 1950–1975, [arXiv:astro-ph.GA/1801.10170]. https://doi.org/10.1093/mnras/sty2339.
  87. Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage. Phys. Rev. D 2019, 99, 023012. https://doi.org/10.1103/PhysRevD.99.023012.
  88. Impact of substructure on local dark matter searches. J. Cosmol. Astropart. Phys. 2019, 2019, 013, [arXiv:hep-ph/1908.00747]. https://doi.org/10.1088/1475-7516/2019/12/013.
  89. Implications of the Gaia sausage for dark matter nuclear interactions. Phys. Rev. D 2020, 101, 063026, [arXiv:hep-ph/1910.06356]. https://doi.org/10.1103/PhysRevD.101.063026.
  90. Orbital classification in an N-body bar. Mon. Not. R. Astron. Soc. 2016, 463, 3499–3512, [arXiv:astro-ph.GA/1609.02632]. https://doi.org/10.1093/mnras/stw2301.
  91. Chaos and dynamical trends in barred galaxies: bridging the gap between N-body simulations and time-dependent analytical models. Mon. Not. R. Astron. Soc. 2014, 438, 2201–2217, [arXiv:astro-ph.GA/1311.3450]. https://doi.org/10.1093/mnras/stt2355.
  92. Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn. 1975, 27, 533–543.
  93. Ferrers, N.M. On the Potentials, Ellipsoids, Ellipsoidal Shells, Elliptic Laminae and Elliptic Rings, of Variable Densities. Quart. J. Pure Appl. Math 1877, 14, 1–22.
  94. Pfenniger, D. The 3D dynamics of barred galaxies. Astron. Astrophys. 1984, 134, 373–386.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.