Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Obstacle Problem in Fractional Generalised Orlicz Spaces (2405.17014v1)

Published 27 May 2024 in math.AP

Abstract: We consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic $g$-Laplacian $\mathcal{L}_gs$, with $0<s<1$. We prove the strict T-monotonicity of $\mathcal{L}_gs$ and we obtain the Lewy-Stampacchia inequalities. We consider the approximation of the solutions through semilinear problems, for which we prove a global $L\infty$-estimate, and we extend the local H\"older regularity to the solutions of the obstacle problems in the case of the fractional $p(x,y)$-Laplacian operator. We make further remarks on a few elementary properties of related capacities in the fractional generalised Orlicz framework, with a special reference to the Hilbertian nonlinear case in fractional Sobolev spaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. David R. Adams. Capacity and the obstacle problem. Appl. Math. Optim., 8(1):39–57, 1982.
  2. Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1996.
  3. Robert A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.
  4. Problèmes variationnels et théorie du potentiel non linéaire. Ann. Fac. Sci. Toulouse Math. (5), 1(2):89–136, 1979.
  5. Inéquations variationnelles avec obstacles et espaces fonctionnels en théorie du potentiel. Applicable Anal., 12(4):287–306, 1981.
  6. On a class of nonlocal problems in new fractional Musielak-Sobolev spaces. Appl. Anal., 101(6):1933–1952, 2022.
  7. Embedding and extension results in fractional Musielak-Sobolev spaces. Appl. Anal., 102(1):195–219, 2023.
  8. Anouar Bahrouni. Comparison and sub-supersolution principles for the fractional p⁢(x)𝑝𝑥p(x)italic_p ( italic_x )-Laplacian. J. Math. Anal. Appl., 458(2):1363–1372, 2018.
  9. Capacities in generalized Orlicz spaces. J. Funct. Spaces, pages Art. ID 8459874, 10, 2018.
  10. Stability of variational eigenvalues for the fractional p−limit-from𝑝p-italic_p -laplacian. Discrete Contin. Dyn. Syst., 36(4):1813–1845, 2016.
  11. Local Hölder continuity for fractional nonlocal equations with general growth. Math. Ann., pages 1–40, 2022.
  12. On the L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-regularity for fractional Orlicz problems via Moser’s iteration. Math. Methods Appl. Sci., 46(4):4688–4704, 2023.
  13. Harnack inequality for nonlocal problems with non-standard growth. Math. Ann., pages 1–18, 2022.
  14. Regularity for nonlocal problems with non-standard growth. Calc. Var. Partial Differential Equations, 61(6):Paper No. 227, 31, 2022.
  15. Hölder continuity of solutions to the A𝐴Aitalic_A-Laplace equation involving measures. Commun. Pure Appl. Anal., 8(5):1577–1583, 2009.
  16. Partial differential equations in anisotropic Musielak-Orlicz spaces. Springer Monographs in Mathematics. Springer, Cham, [2021] ©2021.
  17. On fractional Musielak-Sobolev spaces and applications to nonlocal problems. J. Geom. Anal., 33(4):Paper No. 130, 37, 2023.
  18. Traces for fractional Sobolev spaces with variable exponents. Adv. Oper. Theory, 2(4):435–446, 2017.
  19. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.
  20. Fractional order Orlicz-Sobolev spaces. J. Funct. Anal., 277(2):333–367, 2019.
  21. Interior and up to the boundary regularity for the fractional g𝑔gitalic_g-Laplacian: the convex case. Nonlinear Anal., 223:Paper No. 113060, 31, 2022.
  22. Global Hölder regularity for eigenfunctions of the fractional g𝑔gitalic_g-Laplacian. J. Math. Anal. Appl., 526(1):Paper No. 127332, 15, 2023.
  23. The abstract Lewy-Stampacchia inequality and applications. J. Math. Pures Appl. (9), 104(2):258–275, 2015.
  24. Orlicz spaces and generalized Orlicz spaces, volume 2236 of Lecture Notes in Mathematics. Springer, Cham, 2019.
  25. Generalized Orlicz spaces and related PDE. Nonlinear Anal., 143:155–173, 2016.
  26. Stability of solutions to obstacle problems with generalized Orlicz growth. Forum Math., 36(2):285–304, 2024.
  27. Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications.
  28. Fractional Sobolev spaces with variable exponents and fractional p⁢(x)𝑝𝑥p(x)italic_p ( italic_x )-Laplacians. Electron. J. Qual. Theory Differ. Equ., pages Paper No. 76, 10, 2017.
  29. An introduction to variational inequalities and their applications, volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original.
  30. The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differential Equations, 55(3):Art. 63, 29, 2016.
  31. Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron.
  32. Nonlocal self-improving properties. Anal. PDE, 8(1):57–114, 2015.
  33. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin. Dyn. Syst., 35(12):6031–6068, 2015.
  34. Fractional eigenvalues. Calc. Var. Partial Differential Equations, 49(1-2):795–826, 2014.
  35. Catharine Lo. Nonlocal anisotropic problems with fractional type derivatives. Tese, Universidade de Lisboa, Faculdade de Ciências, 2022.
  36. Catharine W. K. Lo and José Francisco Rodrigues. On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative. Port. Math., 80(1-2):157–205, 2023.
  37. Catharine W. K. Lo and José Francisco Rodrigues. On the stability of the s𝑠sitalic_s-nonlocal p𝑝pitalic_p-obstacle problem and their coincidence sets and free boundaries. arXiv: 2402.18106, 2024.
  38. Analysis on function spaces of Musielak-Orlicz type. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2019.
  39. Maximum principles, Liouville theorem and symmetry results for the fractional g𝑔gitalic_g-Laplacian. Nonlinear Anal., 212:Paper No. 112465, 24, 2021.
  40. U. Mosco. Implicit variational problems and quasi variational inequalities. In Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975), Lecture Notes in Math., Vol. 543, pages 83–156. Springer, Berlin, 1976.
  41. Julian Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983.
  42. Jihoon Ok. Local Hölder regularity for nonlocal equations with variable powers. Calc. Var. Partial Differential Equations, 62(1):Paper No. 32, 31, 2023.
  43. Density properties for fractional Musielak-Sobolev spaces. arXiv: 2403.12305, 2024.
  44. Giampiero Palatucci. The Dirichlet problem for the p𝑝pitalic_p-fractional Laplace equation. Nonlinear Anal., 177(part B):699–732, 2018.
  45. Mirco Piccinini. The obstacle problem and the Perron method for nonlinear fractional equations in the Heisenberg group. Nonlinear Anal., 222:Paper No. 112966, 31, 2022.
  46. José Francisco Rodrigues. Obstacle problems in mathematical physics, volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 114.
  47. On the two obstacles problem in Orlicz-Sobolev spaces and applications. Complex Var. Elliptic Equ., 56(7-9):769–787, 2011.
  48. Xavier Ros-Oton. Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat., 60(1):3–26, 2016.
  49. Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev. Mat. Iberoam., 29(3):1091–1126, 2013.
  50. S. Shi and J. Xiao. Fractional capacities relative to bounded open Lipschitz sets complemented. Calc. Var. Partial Differential Equations, 56(1):Paper No. 3, 22, 2017.
  51. On fractional capacities relative to bounded open Lipschitz sets. Potential Anal., 45(2):261–298, 2016.
  52. Dual characterization of fractional capacity via solution of fractional p𝑝pitalic_p-Laplace equation. Math. Nachr., 293(11):2233–2247, 2020.
  53. Guido Stampacchia. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15(fasc. 1):189–258, 1965.
  54. Mahamadi Warma. The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal., 42(2):499–547, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com