Unilateral Problems for Quasilinear Operators with Fractional Riesz Gradients (2311.18428v1)
Abstract: In this work, we develop the classical theory of monotone and pseudomonotone operators in the class of convex constrained Dirichlet-type problems involving fractional Riesz gradients in bounded and in unbounded domains $\Omega\subset\mathbb{R}d$. We consider the problem of finding $u\in Ks$, such that, \begin{equation*} \int_{\mathbb{R}d}{\boldsymbol{a}(x,u,Ds u)\cdot Ds(v-u)}\,dx+\int_\Omega{b(x,u,Ds u)(v-u)}\,dx\geq 0 %\langle F, v-u\rangle \end{equation*} for all $v\in Ks$. Here $Ks\subset\Lambda{s,p}_0(\Omega)$ is a non-empty, closed and convex set of a fractional Sobolev type space $\Lambda{s,p}_0(\Omega)$ with $0\leq s\leq 1$ and $1<p<\infty$, and $Ds$ denotes the distributional Riesz fractional gradient, with two limit cases: $D1=D$ representing the classical gradient in the classical Sobolev space $\Lambda{1,p}_0(\Omega)=W{1,p}_0(\Omega)$, and $-D0=R$ denotes the vector-valued Riesz transform within $\Lambda{0,p}_0(\Omega)={u\in Lp(\mathbb{R}d):\, u=0 \mbox{ a.e. in } \mathbb{R}d\setminus\Omega}$. We discuss the existence and uniqueness of solutions in this novel framework and we obtain new results on the continuous dependence, with respect to the fractional parameter $s$, of variational solutions corresponding to several classical assumptions on the structural functions $\boldsymbol{a}$ and $b$ adapted to the fractional framework. We introduce an extension of the Mosco convergence for convex sets $Ks$ with respect to the parameter $s$, including the limit cases $s=1$ and $s=0$, to prove weak or strong convergences of the solutions $u_s$ and their fractional gradients $Dsu$, according to different cases. Several applications are illustrated with examples of unilateral problems, including quasi-variational inequalities with constraints of obstacle type $u\geq \psi$ and $s$-gradient type $|Dsu|\leq g$.
- R. A. Adams. Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
- Function spaces and potential theory, volume 314 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1996.
- H. Antil and C. N. Rautenberg. Fractional elliptic quasi-variational inequalities: theory and numerics. Interfaces Free Bound., 20(1):1–24, 2018.
- On a fractional version of a Murat compactness result and applications. SIAM J. Math. Anal., 53(3):3158–3187, 2021.
- Nonlocal Lagrange multipliers and transport densities. arXiv preprint arXiv:2208.14274, 2022. To appear in Bull. Math. Sci.
- On a class of nonlocal problems with fractional gradient constraint. In European Congress of Mathematics, pages 885–906. EMS Press, Berlin, 2023.
- N. Aronszajn and K. T. Smith. Theory of Bessel potentials. Number 26. University of Kansas, Dept. of Mathematics, 1959.
- N. Aronszajn and K. T. Smith. Theory of Bessel potentials. I. In Annales de l’institut Fourier, volume 11, pages 385–475, 1961.
- C. Baiocchi and A. Capelo. Variational and quasivariational inequalities. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984. Applications to free boundary problems, Translated from the Italian by Lakshmi Jayakar.
- A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II. C. R. Math. Acad. Sci. Paris, 360:589–626, 2022.
- Fractional Piola identity and polyconvexity in fractional spaces. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 37(4):955–981, 2020.
- ΓΓ\Gammaroman_Γ-convergence of polyconvex functionals involving s-fractional gradients to their local counterparts. Calculus of Variations and Partial Differential Equations, 60(1):Paper No. 7, 2021.
- Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A-B, 276:A1279–A1284, 1973.
- A. Bensoussan and J.-L. Lions. Contrôle impulsionnel et inéquations quasi variationnelles, volume 11 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Paris, 1982.
- H. Brezis and P. Mironescu. Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35(5):1355–1376, 2018.
- L. Boccardo. Some new results about Mosco convergence. J. Convex Anal., 28(2):387–394, 2021.
- Stability of variational eigenvalues for the fractional p𝑝pitalic_p-Laplacian. Discrete Contin. Dyn. Syst., 36(4):1813–1845, 2016.
- H. Brezis. Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble), 18(fasc. 1):115–175, 1968.
- F. E. Browder. Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. U.S.A., 74(7):2659–2661, 1977.
- C. Bucur and E. Valdinoci. Nonlocal diffusion and applications, volume 20 of Lecture Notes of the Unione Matematica Italiana. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016.
- A.-P. Calderón. Lebesgue spaces of differentiable functions and distributions. In Proc. Sympos. Pure Math., Vol. IV, pages 33–49. American Mathematical Society, Providence, R.I., 1961.
- P. Campos. Lions-Calderón spaces and applications to nonlinear fractional partial differential equations. Master’s thesis, Faculdade de Ciências da Universidade de Lisboa, https://repositorio.ul.pt/handle/10451/52753, 2021.
- On fractional and classical hyperbolic obstacle-type problems. Discrete and Continuous Dynamical Systems - S, 2023. https://doi.org/10.3934/dcdss.2023164.
- G. E. Comi and G. Stefani. A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up. J. Funct. Anal., 277(10):3373–3435, 2019.
- G. E. Comi and G. Stefani. A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I. Revista Matemática Complutense, pages 1–79, 2022.
- Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.
- Estimates on translations and Taylor expansions in fractional Sobolev spaces. Nonlinear Anal., 200:111995, 12, 2020.
- Three representations of the fractional p𝑝pitalic_p-Laplacian: semigroup, extension and Balakrishnan formulas. Fract. Calc. Appl. Anal., 24(4):966–1002, 2021.
- Fractional Sobolev spaces and inequalities, volume 230 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2023.
- Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian. J. Fourier Anal. Appl., 28(2):Paper No. 18, 44, 2022.
- Uncertainty quantification in variational inequalities—theory, numerics, and applications. CRC Press, Boca Raton, FL, 2022.
- L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, third edition, 2014.
- L. Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts in Mathematics. Springer, New York, third edition, 2014.
- J. Horváth. On some composition formulas. Proc. Amer. Math. Soc., 10:433–437, 1959.
- D. Jerison and C. E. Kenig. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal., 130(1):161–219, 1995.
- J.-L. Joly and U. Mosco. à propos de l’existence et de la régularité des solutions de certaines inéquations quasi-variationnelles. J. Functional Analysis, 34(1):107–137, 1979.
- R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213–215, 1960.
- Existence theorems for elliptic quasi-variational inequalities in Banach spaces. In Recent advances in nonlinear analysis, pages 149–169. World Sci. Publ., Hackensack, NJ, 2008.
- C. Kreisbeck and H. Schönberger. Quasiconvexity in the fractional calculus of variations: characterization of lower semicontinuity and relaxation. Nonlinear Anal., 215:Paper No. 112625, 26, 2022.
- T. Kurokawa. On the Riesz and Bessel kernels as approximations of the identity. Sci. Rep. Kagoshima Univ., (30):31–45, 1981.
- M. Kwaśnicki. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal., 20(1):7–51, 2017.
- J.-L. Lions. Une construction d’espaces d’interpolation. C. R. Acad. Sci. Paris, 251:1853–1855, 1960.
- J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris; Gauthier-Villars, Paris, 1969.
- J.-L. Lions and E. Magenes. Problemi ai limiti non omogenei (iii). Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 15(1-2):41–103, 1961.
- R. Landes and V. Mustonen. On pseudomonotone operators and nonlinear noncoercive variational problems on unbounded domains. Math. Ann., 248(3):241–246, 1980.
- F. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Universitext. Springer, New York, second edition, 2015.
- On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative. Port. Math, 80(1/2):157–205, 2023.
- On an anisotropic fractional Stefan-type problem with Dirichlet boundary conditions. Math. Eng., 5(3):Paper No. 047, 38, 2023.
- Variational methods for nonlocal fractional problems, volume 162 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2016.
- G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346, 1962.
- U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3:510–585, 1969.
- U. Mosco. Implicit variational problems and quasi variational inequalities. In Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975), Lecture Notes in Math., Vol. 543, pages 83–156. Springer, Berlin-New York, 1976.
- A. C. Ponce. Elliptic PDEs, measures and capacities, volume 23 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2016.
- J. F. Rodrigues. Obstacle problems in mathematical physics, volume 134 of North-Holland Mathematics Studies. Elsevier, 1987.
- T. Roubíček. Nonlinear Partial Differential Equations with Applications, volume 153 of Int. Series Numerical Math. Birkhäuser, Basel, 2nd edition, 2013.
- J. F. Rodrigues and L. Santos. On nonlocal variational and quasi-variational inequalities with fractional gradient. Appl. Math. Optim., 80(3):835–852, 2019. correction in Appl. Math. Optim. 84:3565–3567, 2021.
- J. F. Rodrigues and L. Santos. Variational and quasi-variational inequalities with gradient type constraints. In Topics in applied analysis and optimisation—partial differential equations, stochastic and numerical analysis, CIM Ser. Math. Sci., pages 319–361. Springer, Cham, 2019.
- H. M. J. Schönberger. Characterization of lower semicontinuity and relaxation of fractional integral and supremal functionals. Master’s thesis, 2021.
- Peridynamic states and constitutive modeling. J. Elasticity, 88(2):151–184, 2007.
- R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Soc., 2013.
- S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids, 48(1):175–209, 2000.
- J. Simon. Régularité de la solution d’un problème aux limites non linéaires. Ann. Fac. Sci. Toulouse Math. (5), 3(3-4):247–274 (1982), 1981.
- Embedding theorems. In Amer. Math. Soc. Trans. (2), 1970, pages 147–173. Translation of Proc. 4th All-Union Math. Congr. (Leningrad, 1961), Vol. I, pages 227–242. Izdat. Akad. Nauk SSSR, Leningrad, 1963.
- On a new class of fractional partial differential equations. Adv. Calc. Var., 8(4):321–336, 2015.
- On a new class of fractional partial differential equations II. Adv. Calc. Var., 11(3):289–307, 2018.
- Regularity for a fractional p𝑝pitalic_p-Laplace equation. Commun. Contemp. Math., 20(1):1750003, 6, 2018.
- E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
- R. Strichartz. Multipliers on fractional Sobolev spaces. J. Math. Mech., 16:1031–1060, 1967.
- H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1983.
- M. Šilhavý. Beyond fractional laplacean: fractional gradient and divergence. https://www.researchgate.net/publication/295095188_Beyond_fractional_laplaceanfractional_gradient_and_divergence, 2016.
- M. Šilhavý. Fractional vector analysis based on invariance requirements (critique of coordinate approaches). Contin. Mech. Thermodyn., 32(1):207–228, 2020.