Energy extraction via magnetic reconnection in magnetized black holes (2405.16941v3)
Abstract: The Comisso-Asenjo mechanism is a novel mechanism proposed recently to extract energy from black holes through magnetic reconnection of the surrounding charged plasma, in which the magnetic field plays a crucial role. In this work, we revisit this process by taking into account the backreaction of the magnetic field on the black hole's geometry. We employ the Kerr-Melvin metric to describe the local near-horizon geometry of the magnetized black hole. By analyzing the circular orbits in the equatorial plane, energy extraction conditions, power and efficiency of the energy extraction, we found that while a stronger magnetic field can enhance plasma magnetization and aid energy extraction, its backreaction on the spacetime may hinder the process, with a larger magnetic field posing a greater obstacle. Balancing these effects, an optimal moderate magnetic field strength is found to be most conducive to energy extraction. Moreover, there is a maximum limit to the magnetic field strength associated with the black hole's spin, beyond which circular orbits in the equatorial plane are prohibited, thereby impeding energy extraction in the current scenario.
- D. Christodoulou, “Reversible and irreversible transforations in black hole physics,” Phys. Rev. Lett. 25 (1970) 1596–1597.
- J. M. Bardeen, W. H. Press, and S. A. Teukolsky, “Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J. 178 (1972) 347.
- R. M. Wald, “Energy Limits on the Penrose Process,” Astrophys. J. 191 (1974) 231.
- S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation,” Astrophys. J. 193 (1974) 443–461.
- T. Piran, J. Shaham, and J. Katz, “High efficiency of the penrose mechanism for particle collisions,” Astrophys. J. Lett. 196 (1975) L107.
- R. D. Blandford and R. L. Znajek, “Electromagnetic extractions of energy from Kerr black holes,” Mon. Not. Roy. Astron. Soc. 179 (1977) 433–456.
- M. Takahashi, S. Nitta, Y. Tatematsu, and A. Tomimatsu, “Magnetohydrodynamic Flows in Kerr Geometry: Energy Extraction from Black Holes,” Astrophys. J. 363 (Nov., 1990) 206.
- H. K. Lee, R. A. M. J. Wijers, and G. E. Brown, “The Blandford-Znajek process as a central engine for a gamma-ray burst,” Phys. Rept. 325 (2000) 83–114, arXiv:astro-ph/9906213.
- A. Tchekhovskoy, J. C. McKinney, and R. Narayan, “Simulations of Ultrarelativistic Magnetodynamic Jets from Gamma-ray Burst Engines,” Mon. Not. Roy. Astron. Soc. 388 (2008) 551, arXiv:0803.3807 [astro-ph].
- S. S. Komissarov and M. V. Barkov, “Activation of the Blandford-Znajek mechanism in collapsing stars,” Mon. Not. Roy. Astron. Soc. 397 (2009) 1153, arXiv:0902.2881 [astro-ph.HE].
- J. C. McKinney and C. F. Gammie, “A Measurement of the electromagnetic luminosity of a Kerr black hole,” Astrophys. J. 611 (2004) 977–995, arXiv:astro-ph/0404512.
- J. F. Hawley and J. H. Krolik, “Magnetically driven jets in the kerr metric,” Astrophys. J. 641 (2006) 103–116, arXiv:astro-ph/0512227.
- S. S. Komissarov and J. C. McKinney, “Meissner effect and Blandford-Znajek mechanism in conductive black hole magnetospheres,” Mon. Not. Roy. Astron. Soc. 377 (2007) L49–L53, arXiv:astro-ph/0702269.
- A. Tchekhovskoy, R. Narayan, and J. C. McKinney, “Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole,” Mon. Not. Roy. Astron. Soc. 418 (2011) L79–L83, arXiv:1108.0412 [astro-ph.HE].
- L. Comisso and F. A. Asenjo, “Magnetic reconnection as a mechanism for energy extraction from rotating black holes,” Phys. Rev. D 103 no. 2, (2021) 023014, arxiv:2012.00879 [astro-ph.HE].
- S. Koide and K. Arai, “Energy extraction from a rotating black hole by magnetic reconnection in ergosphere,” Astrophys. J. 682 (2008) 1124, arxiv:0805.0044 [astro-ph].
- K. Parfrey, A. Philippov, and B. Cerutti, “First-Principles Plasma Simulations of Black-Hole Jet Launching,” Phys. Rev. Lett. 122 no. 3, (2019) 035101, arXiv:1810.03613 [astro-ph.HE].
- S. S. Komissarov, “Observations of the Blandford-Znajek and the MHD Penrose processes in computer simulations of black hole magnetospheres,” Mon. Not. Roy. Astron. Soc. 359 (2005) 801–808, arXiv:astro-ph/0501599.
- W. E. East and H. Yang, “Magnetosphere of a spinning black hole and the role of the current sheet,” Phys. Rev. D 98 no. 2, (2018) 023008, arXiv:1805.05952 [astro-ph.HE].
- B. Ripperda, F. Bacchini, and A. Philippov, “Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks,” Astrophys. J. 900 no. 2, (2020) 100, arXiv:2003.04330 [astro-ph.HE].
- L. Comisso, M. Lingam, Y.-M. Huang, and A. Bhattacharjee, “General theory of the plasmoid instability,” Physics of Plasmas 23 no. 10, (2016) 100702, arxiv:1608.04692 [astro-ph, physics:math-ph, physics:physics].
- D. A. Uzdensky, N. F. Loureiro, and A. A. Schekochihin, “Fast magnetic reconnection in the plasmoid-dominated regime,” Phys. Rev. Lett. 105 (2010) 235002, arxiv:1008.3330 [astro-ph.SR].
- L. Comisso, M. Lingam, Y.-M. Huang, and A. Bhattacharjee, “Plasmoid instability in forming current sheets,” Astrophys. J. 850 no. 2, (2017) 142, arxiv:1707.01862 [astro-ph.HE].
- W. Daughton, V. Roytershteyn, B. J. Albright, H. Karimabadi, L. Yin, and K. J. Bowers, “Transition from collisional to kinetic regimes in large-scale reconnection layers,” Phys. Rev. Lett. 103 no. 6, (2009) 065004.
- A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, “Fast reconnection in high-lundquist-number plasmas due to secondary tearing instabilities,” Physics of Plasmas 16 no. 11, (2009) 112102, arxiv:0906.5599 [physics].
- K. Mori et al., “NuSTAR discovery of a 3.76-second transient magnetar near Sagittarius A*,” Astrophys. J. Lett. 770 (2013) L23, arXiv:1305.1945 [astro-ph.HE].
- J. A. Kennea et al., “Swift Discovery of a New Soft Gamma Repeater, SGR J1745-29, near Sagittarius A*,” Astrophys. J. Lett. 770 (2013) L24, arXiv:1305.2128 [astro-ph.HE].
- R. P. Eatough et al., “A strong magnetic field around the supermassive black hole at the centre of the Galaxy,” Nature 501 (2013) 391–394, arXiv:1308.3147 [astro-ph.GA].
- S. A. Olausen and V. M. Kaspi, “The McGill Magnetar Catalog,” Astrophys. J. Suppl. 212 (2014) 6, arXiv:1309.4167 [astro-ph.HE].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon,” Astrophys. J. Lett. 910 no. 1, (2021) L13, arXiv:2105.01173 [astro-ph.HE].
- S.-W. Wei, H.-M. Wang, Y.-P. Zhang, and Y.-X. Liu, “Effects of tidal charge on magnetic reconnection and energy extraction from spinning braneworld black hole,” JCAP 04 no. 04, (2022) 050, arxiv:2201.12729 [gr-qc].
- W. Liu, “Energy extraction via magnetic reconnection in the ergosphere of a rotating non-kerr black hole,” Astrophys. J. 925 no. 2, (2022) 149, arxiv:2204.07338 [astro-ph.HE].
- A. Carleo, G. Lambiase, and L. Mastrototaro, “Energy extraction via magnetic reconnection in lorentz breaking kerr–sen and kiselev black holes,” Eur. Phys. J. C 82 no. 9, (2022) 776, arxiv:2206.12988 [gr-qc].
- M. Khodadi, “Magnetic reconnection and energy extraction from a spinning black hole with broken lorentz symmetry,” Phys. Rev. D 105 no. 2, (2022) 023025, arxiv:2201.02765 [gr-qc].
- Z. Li, X.-K. Guo, and F. Yuan, “Energy extraction from rotating regular black hole via comisso-asenjo mechanism,” Phys. Rev. D 108 no. 4, (2023) 044067, arxiv:2304.08831 [gr-qc].
- Z. Li and F. Yuan, “Energy extraction via comisso-asenjo mechanism from rotating hairy black hole,” Phys. Rev. D 108 no. 2, (2023) 024039, arxiv:2304.12553 [gr-qc].
- M. Khodadi, D. F. Mota, and A. Sheykhi, “Harvesting energy driven by comisso-asenjo process from kerr-mog black holes,” JCAP 10 (2023) 034, arxiv:2307.00478 [astro-ph.HE].
- S. Shaymatov, M. Alloqulov, B. Ahmedov, and A. Wang, “A kerr-newman-mog black hole’s impact on the magnetic reconnection,” arXiv:2307.03012 [gr-qc] (2023) , arxiv:2307.03012 [gr-qc].
- C.-H. Wang, C.-Q. Pang, and S.-W. Wei, “Extracting energy via magnetic reconnection from kerr–de sitter black holes,” Phys. Rev. D 106 no. 12, (2022) 124050, arxiv:2209.08837 [gr-qc].
- S.-J. Zhang, “Energy extraction via magnetic reconnection in Konoplya-Rezzolla-Zhidenko parametrized black holes,” Phys. Rev. D 109 no. 8, (2024) 084066, arXiv:2402.15050 [gr-qc].
- B. Chen, Y. Hou, J. Li, and Y. Shen, “Energy Extraction from a Kerr Black Hole via Magnetic Reconnection within the Plunging Region,” arXiv:2405.11488 [gr-qc].
- R. M. Wald, “Black hole in a uniform magnetic field,” Phys. Rev. D 10 (1974) 1680–1685.
- F. J. Ernst, “Black holes in a magnetic universe,” J. Math. Phys. 17 no. 1, (1976) 54–56.
- F. J. Ernst and W. J. Wild, “Kerr black holes in a magnetic universe,” J. Math. Phys. 17 no. 2, (1976) 182.
- G. W. Gibbons, A. H. Mujtaba, and C. N. Pope, “Ergoregions in Magnetised Black Hole Spacetimes,” Class. Quant. Grav. 30 no. 12, (2013) 125008, arXiv:1301.3927 [gr-qc].
- Z. Budinova, M. Dovciak, V. Karas, and A. Lanza, “Magnetic fields around black holes,” arXiv:astro-ph/0005216.
- J. Bičák, V. Karas, and T. Ledvinka, “Black holes and magnetic fields,” IAU Symp. 238 (2007) 139–144, arXiv:astro-ph/0610841.
- G. W. Gibbons, Y. Pang, and C. N. Pope, “Thermodynamics of magnetized Kerr-Newman black holes,” Phys. Rev. D 89 no. 4, (2014) 044029, arXiv:1310.3286 [hep-th].
- M. Astorino, G. Compère, R. Oliveri, and N. Vandevoorde, “Mass of Kerr-Newman black holes in an external magnetic field,” Phys. Rev. D 94 no. 2, (2016) 024019, arXiv:1602.08110 [gr-qc].
- I. Booth, M. Hunt, A. Palomo-Lozano, and H. K. Kunduri, “Insights from Melvin–Kerr–Newman spacetimes,” Class. Quant. Grav. 32 no. 23, (2015) 235025, arXiv:1502.07388 [gr-qc].
- M. Astorino, “Magnetised Kerr/CFT correspondence,” Phys. Lett. B 751 (2015) 96–106, arXiv:1508.01583 [hep-th].
- M. Astorino, “Thermodynamics of Regular Accelerating Black Holes,” Phys. Rev. D 95 no. 6, (2017) 064007, arXiv:1612.04387 [gr-qc].
- Y. Gao and S. Gao, “Testing the weak cosmic censorship conjecture for extremal magnetized Kerr–Newman black holes,” Eur. Phys. J. C 82 no. 8, (2022) 763, arXiv:2208.00703 [gr-qc].
- M. Wang, S. Chen, and J. Jing, “Kerr black hole shadows in Melvin magnetic field with stable photon orbits,” Phys. Rev. D 104 no. 8, (2021) 084021, arXiv:2104.12304 [gr-qc].
- Y. Hou, Z. Zhang, H. Yan, M. Guo, and B. Chen, “Image of a Kerr-Melvin black hole with a thin accretion disk,” Phys. Rev. D 106 no. 6, (2022) 064058, arXiv:2206.13744 [gr-qc].
- C. Chakraborty, P. Patil, and G. Akash, “Magnetic Penrose process in the magnetized Kerr spacetime,” Phys. Rev. D 109 no. 6, (2024) 064062, arXiv:2401.13347 [astro-ph.HE].
- A. N. Aliev and D. V. Galtsov, “Magnetized Black Holes,” Sov. Phys. Usp. 32 (1989) 75.
- A. N. Aliev and D. V. Galtsov, “Exact Solutions For Magnetized Black Holes,” Astrophys. Space Sci. 155 (1989) 181.
- M. A. Melvin, “Pure magnetic and electric geons,” Phys. Lett. 8 (1964) 65–70.
- D. V. Galtsov and V. I. Petukhov, “Black Hole in an External Magnetic Field,” Zh. Eksp. Teor. Fiz. 74 (1978) 801–818.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.