Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Game Derandomization (2405.16353v1)

Published 25 May 2024 in cs.CC

Abstract: Using Kolmogorov Game Derandomization, upper bounds of the Kolmogorov complexity of deterministic winning players against deterministic environments can be proved. This paper gives improved upper bounds of the Kolmogorov complexity of such players. This paper also generalizes this result to probabilistic games. This applies to computable, lower computable, and uncomputable environments. We characterize the classic even-odds game and then generalize these results to time bounded players and also to all zero-sum repeated games. We characterize partial game derandomization. But first, we start with an illustrative example of game derandomization, taking place on the island of Crete.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. L. Antunes and L. Fortnow. Worst-Case Running Times for Average-Case Algorithms. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 298–303, 2009.
  2. S. Epstein and M. Betke. An Information Theoretic Representation of Agent Dynamics as Set Intersections. In Proceedings of the Fourth Conference on Artificial General Intelligence, volume 6830 of Lecture Notes in Artificial Intelligence, pages 72–81. Springer, 2011.
  3. S. Epstein. 22 examples of solution compression via derandomization. CoRR, abs/2208.11562, 2022.
  4. S. Epstein. The EL Theorem, 2023.
  5. Samuel Epstein. Kolmogorov Derandomization. 2023. HAL Archive, hal-04292439, https://hal.science/hal-04292439.
  6. Samuel Epstein. On Outliers. 2023. HAL Archive, hal-04285958, https://hal.science/hal-04285958.
  7. S. Epstein. On Exotic Sequences. http://www.jptheorygroup.org/doc/OnExoticSequences.pdf, 2024.
  8. P. Grunwald. The Minimum Description Length Principle. The MIT Press, 2007.
  9. L. A. Levin. Laws of Information Conservation (Non-growth) and Aspects of the Foundations of Probability Theory. Problemy Peredachi Informatsii, 10(3):206–210, 1974.
  10. L. A. Levin. Randomness conservation inequalities; information and independence in mathematical theories. Information and Control, 61(1):15–37, 1984.
  11. L. A. Levin. Forbidden information. J. ACM, 60(2), 2013.
  12. L. A. Levin. Occam bound on lowest complexity of elements. Annals of Pure and Applied Logic, 167(10):897–900, 2016.
  13. Optimal coding theorems in time-bounded kolmogorov complexity. CoRR, abs/2204.08312, 2022.
  14. N. Vereshchagin and P. Vitányi. Rate Distortion and Denoising of Individual Data Using Kolmogorov Complexity. IEEE Transactions on Information Theory, 56:3438–3454, 2004.
  15. N. Vereshchagin and P. Vitanyi. Algorithmic rate-distortion theory. CoRR, abs/0411014v3, 2005.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com