Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Multi-resources Integration Empowered Task Offloading in Internet of Vehicles: From the Perspective of Wireless Interference (2405.16078v2)

Published 25 May 2024 in cs.IT and math.IT

Abstract: The task offloading technology plays a vital role in the Internet of Vehicles (IoV), by satisfying the diversified demands of the vehicles, such as the energy consumption and processing latency of the computing task. Different from the previous works, on the one hand, they ignored the wireless interference of communications among vehicle-to-vehicle (V2V), as well as between vehicles and roadside units (RSU); on the other hand, the available resources of parked vehicles on the roadside and other moving vehicles on the road are also ignored. In this paper, first of all, we adopt a truncated Gaussian distribution for modeling the vehicle moving speed, instead of the simplistic average speed models in prior studies. Then, with the consideration of wireless interference and effective communication duration existing in V2V and RSUs, we establish an analytical framework of the task offloading, characterized by the energy consumption and processing delay, by integrating computing resources of parked/moving vehicles and RSUs. Furthermore, inspired by the method of multi-agent deterministic policy gradient (MADDPG), we address a joint optimization of the energy consumption and processing delay of the computing task, while ensuring the load balancing of the resources. Finally, the simulations demonstrate the effectiveness and correctness of the proposed MADDPG. In particular, compared with the current popular methods of the task offloading, the MADDPG shows the best performance, in terms of convergence speed, energy consumption and processing delay.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Huang, J. Wan, B. Lv, Q. Ye, and Y. Chen, “Joint computation offloading and resource allocation for edge-cloud collaboration in internet of vehicles via deep reinforcement learning,” IEEE Systems Journal, vol. 17, no. 2, pp. 2500–2511, 2023.
  2. Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. Kwok, “Intelligent edge computing in internet of vehicles: A joint computation offloading and caching solution,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 4, pp. 2212–2225, 2020.
  3. F. Jiang, W. Liu, J. Wang, and X. Liu, “Q-learning based task offloading and resource allocation scheme for internet of vehicles,” in 2020 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2020, pp. 460–465.
  4. H. Zhou, K. Jiang, S. He, G. Min, and J. Wu, “Distributed deep multi-agent reinforcement learning for cooperative edge caching in internet-of-vehicles,” IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp. 9595–9609, 2023.
  5. D. Zhang, W. Wang, J. Zhang, T. Zhang, J. Du, and C. Yang, “Novel edge caching approach based on multi-agent deep reinforcement learning for internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8324–8338, 2023.
  6. H. Gao, X. Wang, W. Wei, A. Al-Dulaimi, and Y. Xu, “Com-ddpg: Task offloading based on multiagent reinforcement learning for information-communication-enhanced mobile edge computing in the internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 348–361, 2024.
  7. W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task offloading and resource allocation for vehicular edge computing based on v2i and v2v modes,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4277–4292, 2023.
  8. A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, “A novel framework for mobile-edge computing by optimizing task offloading,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 13 065–13 076, 2021.
  9. B. Kar, W. Yahya, Y.-D. Lin, and A. Ali, “Offloading using traditional optimization and machine learning in federated cloud–edge–fog systems: A survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1199–1226, 2023.
  10. J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, and Z. Han, “Drl-based v2v computation offloading for blockchain-enabled vehicular networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 7, pp. 3882–3897, 2023.
  11. G. Raja, A. Ganapathisubramaniyan, S. Anbalagan, S. B. M. Baskaran, K. Raja, and A. K. Bashir, “Intelligent reward-based data offloading in next-generation vehicular networks,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 3747–3758, 2020.
  12. Y. Wu, L. P. Qian, H. Mao, X. Yang, H. Zhou, X. Tan, and D. H. Tsang, “Secrecy-driven resource management for vehicular computation offloading networks,” IEEE Network, vol. 32, no. 3, pp. 84–91, 2018.
  13. F. Liu, J. Chen, Q. Zhang, and B. Li, “Online mec offloading for v2v networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 10, pp. 6097–6109, 2023.
  14. C. Chen, L. Chen, L. Liu, S. He, X. Yuan, D. Lan, and Z. Chen, “Delay-optimized v2v-based computation offloading in urban vehicular edge computing and networks,” IEEE Access, vol. 8, pp. 18 863–18 873, 2020.
  15. X. Xu, X. Zhang, X. Liu, J. Jiang, L. Qi, and M. Z. A. Bhuiyan, “Adaptive computation offloading with edge for 5g-envisioned internet of connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5213–5222, 2020.
  16. M. Zhu, Y. Hou, X. Tao, T. Sui, and L. Gao, “Joint optimal allocation of wireless resource and mec computation capability in vehicular network,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).   IEEE, 2020, pp. 1–6.
  17. Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge computing service provisioning for vehicular networks: A consensus admm approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 5087–5099, 2019.
  18. X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task scheduling for online vehicular edge computing,” IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 598–611, 2020.
  19. W. Feng, N. Zhang, S. Li, S. Lin, R. Ning, S. Yang, and Y. Gao, “Latency minimization of reverse offloading in vehicular edge computing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5343–5357, 2022.
  20. X. Xu, Y. Xue, X. Li, L. Qi, and S. Wan, “A computation offloading method for edge computing with vehicle-to-everything,” IEEE access, vol. 7, pp. 131 068–131 077, 2019.
  21. X. Dai, Z. Xiao, H. Jiang, H. Chen, G. Min, S. Dustdar, and J. Cao, “A learning-based approach for vehicle-to-vehicle computation offloading,” IEEE Internet of Things Journal, vol. 10, no. 8, pp. 7244–7258, 2022.
  22. X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K.-C. Chen, and H. Zhang, “Reliable computation offloading for edge-computing-enabled software-defined iov,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7097–7111, 2020.
  23. X. Huang, L. He, X. Chen, L. Wang, and F. Li, “Revenue and energy efficiency-driven delay-constrained computing task offloading and resource allocation in a vehicular edge computing network: A deep reinforcement learning approach,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8852–8868, 2021.
  24. C.-M. Huang, S.-Y. Lin, and Z.-Y. Wu, “The k-hop-limited v2v2i vanet data offloading using the mobile edge computing (mec) mechanism,” Vehicular Communications, vol. 26, no. 8, p. 100268, 2020.
  25. S. Raza, S. Wang, M. Ahmed, M. R. Anwar, M. A. Mirza, and W. U. Khan, “Task offloading and resource allocation for iov using 5g nr-v2x communication,” IEEE Internet of Things Journal, vol. 9, no. 13, pp. 10 397–10 410, 2021.
  26. B. Hazarika, K. Singh, S. Biswas, and C.-P. Li, “Drl-based resource allocation for computation offloading in iov networks,” IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 8027–8038, 2022.
  27. K. Yu, J. Yu, Z. Feng, and H. Chen, “A reassessment on applying protocol interference model under rayleigh fading: From perspective of link scheduling,” IEEE/ACM Transactions on Networking, vol. 32, no. 1, pp. 238–252, 2024.
  28. K. Yu, J. Yu, X. Cheng, D. Yu, and A. Dong, “Efficient link scheduling solutions for the internet of things under rayleigh fading,” IEEE/ACM Transactions on Networking, vol. 29, no. 6, pp. 2508–2521, 2021.
  29. J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019.
  30. X. Zhang, W. Wu, Z. Zhao, J. Wang, and S. Liu, “Rmddqn-learning: Computation offloading algorithm based on dynamic adaptive multi -objective reinforcement learning in internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 11 374–11 388, 2023.
  31. L. Zhu, Z. Zhang, P. Lin, O. Shafiq, Y. Zhang, and F. R. Yu, “Learning-based load-aware heterogeneous vehicular edge computing,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 4583–4588.
  32. R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” Advances in neural information processing systems, vol. 30, 2017.
  33. W. Duan, X. Li, Y. Huang, H. Cao, and X. Zhang, “Multi-agent-deep-reinforcement-learning-enabled offloading scheme for energy minimization in vehicle-to-everything communication systems,” Electronics, vol. 13, no. 3, p. 663, 2024.
  34. Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive learning-based task offloading for vehicular edge computing systems,” IEEE Transactions on vehicular technology, vol. 68, no. 4, pp. 3061–3074, 2019.
  35. H. Yang, X. Xie, and M. Kadoch, “Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency iov communication networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4157–4169, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.