Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Topological classification for chiral symmetry with non-equal sublattices (2405.16001v1)

Published 25 May 2024 in cond-mat.mes-hall

Abstract: Chiral symmetry on bipartite lattices with different numbers of $A$-sites and $B$-sites is exceptional in condensed matter, as it gives rise to zero-energy flat bands. Crystalline systems featuring chiral symmetry with non-equal sublattices include Lieb lattices, dice lattices, and particularly Moir\'e systems, where interaction converts the flat bands into fascinating many-body phases. In this work, we present a comprehensive classification theory for chiral symmetry with non-equal sublattices. First, we identify the classifying spaces as Stiefel manifolds and derive the topological classification table. Then, we extend the symmetry by taking $\mathcal{PT}$ symmetry into account, and ultimately obtain three symmetry classes corresponding to complex, real, and quaternionic Stiefel manifolds, respectively. Finally, we apply our theory to clarify the topological invariant for $\mathcal{PT}$-invariant Moir\'e systems and construct physical models with Lieb and dice lattice structures to demonstrate our theory. Our work establishes the theoretical foundation of topological phases protected by chiral symmetries with non-equal sublattices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. F. Wang and Y. Ran, Phys. Rev. B 84, 241103 (2011).
  2. A. Graf and F. Piéchon, Phys. Rev. B 108, 115105 (2023).
  3. M. F. Atiyah, The Quarterly Journal of Mathematics 17, 367 (1966).
  4. A. Kitaev, AIP Conference Proceedings 1134, 22 (2010).
  5. A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
  6. Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett. 110, 240404 (2013).
  7. G. E. Volovik, Universe in a helium droplet (Oxford University Press, Oxford UK, 2003).
  8. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  9. S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters (Springer, 2012) pp. 15–17.
  10. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  11. J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).
  12. J. IM, The Topology of Stiefel Manifolds (Cambridge University Press, 1977).
  13. See the wikipedia item: https://en.wikipedia.org/wiki/Stiefel_manifold.
  14. Y. X. Zhao and Y. Lu, Phys. Rev. Lett. 118, 056401 (2017).
  15. T. Bzdusek and M. Sigrist, Phys. Rev. B 96, 155105 (2017).
  16. F. J. Dyson, Journal of Mathematical Physics 3, 1199 (1962).
  17. The codimension is defined as the dimensionality of the sphere Sdsuperscript𝑆𝑑S^{d}italic_S start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT enclosing the gapless modes from their transverse dimensions in momentum space.
  18. M. Stone, International Journal of Modern Physics B 30, 1550249 (2016).
  19. S. D. Huber, Nature Physics 12, 621 (2016).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com