Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning (2405.15789v1)

Published 3 May 2024 in cs.AI, cs.IT, cs.LG, cs.LO, and math.IT

Abstract: Issues of safety, explainability, and efficiency are of increasing concern in learning systems deployed with hard and soft constraints. Symbolic Constrained Learning and Knowledge Distillation techniques have shown promising results in this area, by embedding and extracting knowledge, as well as providing logical constraints during neural network training. Although many frameworks exist to date, through an integration of logic and information geometry, we provide a construction and theoretical framework for these tasks that generalize many approaches. We propose a loss-based method that embeds knowledge-enforces logical constraints-into a machine learning model that outputs probability distributions. This is done by constructing a distribution from the external knowledge/logic formula and constructing a loss function as a linear combination of the original loss function with the Fisher-Rao distance or Kullback-Leibler divergence to the constraint distribution. This construction includes logical constraints in the form of propositional formulas (Boolean variables), formulas of a first-order language with finite variables over a model with compact domain (categorical and continuous variables), and in general, likely applicable to any statistical model that was pretrained with semantic information. We evaluate our method on a variety of learning tasks, including classification tasks with logic constraints, transferring knowledge from logic formulas, and knowledge distillation from general distributions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.