Self-consistent evaluation of proximity and inverse proximity effects with pair-breaking in diffusive SN junctions (2405.15770v1)
Abstract: We consider a planar superconducting-normal-metal (SN) junction with both inelastic and spin-flip scattering processes present. In the diffusive limit, we use a one-dimensional formulation of the Usadel equation to compute the self-consistent energy dependence of the single-particle density of states as a function of distance from the interface on both the superconducting and metallic sides for various spatial profiles of a pair-breaking spin-flip term. The pair-breaking processes fill in the superconducting gap at zero energy, which is reflected in the zero-bias tunneling conductance in scanning tunneling microscopy/spectroscopy experiments, in the vicinity of the junction. We also investigate the impact of having a partially transparent interface at the junction. We compare our findings with the observed exponential rise in the zero-bias conductance at the 1H step edge in recent experiments on 4Hb-TaS$_2$ [A. K. Nayak et al., Nat. Phys. 17, 1413 (2021)].
- P. G. De Gennes, Boundary effects in superconductors, Rev. Mod. Phys. 36, 225 (1964).
- B. Pannetier and H. Courtois, Andreev reflection and proximity effect, Journal of low temperature physics 118, 599 (2000).
- N. Moussy, H. Courtois, and B. Pannetier, Local spectroscopy of a proximity superconductor at very low temperature, Europhysics Letters (EPL) 55, 861 (2001).
- M. Vinet, C. Chapelier, and F. Lefloch, Spatially resolved spectroscopy on superconducting proximity nanostructures, Phys. Rev. B 63, 165420 (2001).
- K. D. Usadel, Generalized diffusion equation for superconducting alloys, Phys. Rev. Lett. 25, 507 (1970).
- W. Belzig, C. Bruder, and G. Schön, Local density of states in a dirty normal metal connected to a superconductor, Phys. Rev. B 54, 9443 (1996).
- B. Crouzy, E. Bascones, and D. A. Ivanov, Minigap in a superconductor–normal metal junction with paramagnetic impurities, Phys. Rev. B 72, 092501 (2005).
- A. A. Golubov, F. K. Wilhelm, and A. D. Zaikin, Coherent charge transport in metallic proximity structures, Phys. Rev. B 55, 1123 (1997).
- S. Yip, Conductance anomalies for normal-metal–insulator–superconductor contacts, Phys. Rev. B 52, 15504 (1995).
- K. T. Law and P. A. Lee, 1T-TaS2 as a quantum spin liquid, Proceedings of the National Academy of Sciences 114, 6996 (2017).
- W.-J. Hu, S.-S. Gong, and D. Sheng, Variational monte carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice, Physical Review B 94, 075131 (2016).
- M. H. Fischer, P. A. Lee, and J. Ruhman, Mechanism for π𝜋\piitalic_π phase shifts in little-parks experiments: Application to 4𝐻𝑏−TaS24𝐻𝑏subscriptTaS24\mathit{Hb}{-}\text{TaS}_{2}4 italic_Hb - TaS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and to 2H−TaS22𝐻subscriptTaS22\mathit{H}{-}\text{TaS}_{2}2 italic_H - TaS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intercalated with chiral molecules, Phys. Rev. B 108, L180505 (2023).
- M. Y. Kuprianov and V. Lukichev, Influence of boundary transparency on the critical current of “dirty” ss’s structures, Zh. Eksp. Teor. Fiz 94, 139 (1988).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.