Finding Induced Subgraphs from Graphs with Small Mim-Width (2405.15492v1)
Abstract: In the last decade, algorithmic frameworks based on a structural graph parameter called mim-width have been developed to solve generally NP-hard problems. However, it is known that the frameworks cannot be applied to the Clique problem, and the complexity status of many problems of finding dense induced subgraphs remains open when parameterized by mim-width. In this paper, we investigate the complexity of the problem of finding a maximum induced subgraph that satisfies prescribed properties from a given graph with small mim-width. We first give a meta-theorem implying that various induced subgraph problems are NP-hard for bounded mim-width graphs. Moreover, we show that some problems, including Clique and Induced Cluster Subgraph, remain NP-hard even for graphs with (linear) mim-width at most 2. In contrast to the intractability, we provide an algorithm that, given a graph and its branch decomposition with mim-width at most 1, solves Induced Cluster Subgraph in polynomial time. We emphasize that our algorithmic technique is applicable to other problems such as Induced Polar Subgraph and Induced Split Subgraph. Since a branch decomposition with mim-width at most 1 can be constructed in polynomial time for block graphs, interval graphs, permutation graphs, cographs, distance-hereditary graphs, convex graphs, and their complement graphs, our positive results reveal the polynomial-time solvability of various problems for these graph classes.
- Graph classes with structured neighborhoods and algorithmic applications. Theoretical Computer Science, 511:54–65, 2013. doi:10.1016/j.tcs.2013.01.011.
- A logic-based algorithmic meta-theorem for mim-width. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), pages 3282–3304, 2023. doi:10.1137/1.9781611977554.ch125.
- More applications of the d𝑑ditalic_d-neighbor equivalence: Acyclicity and connectivity constraints. SIAM Journal on Discrete Mathematics, 35(3):1881–1926, 2021. doi:10.1137/20m1350571.
- Node multiway cut and subset feedback vertex set on graphs of bounded mim-width. Algorithmica, 84(5):1385–1417, 2022. doi:10.1007/s00453-022-00936-w.
- Solving problems on generalized convex graphs via mim-width. J. Comput. Syst. Sci., 140:103493, 2024. doi:10.1016/J.JCSS.2023.103493.
- Understanding model counting for beta-acyclic CNF-formulas. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, volume 30 of LIPIcs, pages 143–156. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.143.
- Bounding the mim-width of hereditary graph classes. Journal of Graph Theory, 99(1):117–151, 2022. doi:10.1002/jgt.22730.
- List k𝑘kitalic_k-colouring Ptsubscript𝑃𝑡P_{t}italic_P start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT-free graphs: A mim-width perspective. Information Processing Letters, 173:106168, 2022. doi:10.1016/j.ipl.2021.106168.
- Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer Science, 511:66–76, 2013. doi:10.1016/j.tcs.2013.01.009.
- Vertex deletion problems on chordal graphs. Theoretical Computer Science, 745:75–86, 2018. doi:10.1016/j.tcs.2018.05.039.
- About recognizing (α,β)𝛼𝛽(\alpha,\beta)( italic_α , italic_β ) classes of polar. Discrete Mathematics, 62(2):133–138, 1986. doi:10.1016/0012-365X(86)90113-5.
- The strong perfect graph theorem. Annals of Mathematics, 164(1):51–229, 2006. doi:10.4007/annals.2006.164.51.
- Set-packing problems and threshold graphs. Technical Report CORR73–21, University of Waterloo, 1973.
- Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
- Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000. doi:10.1007/s002249910009.
- Alastair Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electronic Journal of Combinatorics, 11(1), 2004. doi:10.37236/1799.
- On the tractability of optimization problems on H𝐻Hitalic_H-graphs. Algorithmica, 82(9):2432–2473, 2020. doi:10.1007/s00453-020-00692-9.
- Reducing the domination number of graphs via edge contractions and vertex deletions. Discrete Mathematics, 344(1):112169, 2021. doi:10.1016/j.disc.2020.112169.
- Semitotal domination: New hardness results and a polynomial-time algorithm for graphs of bounded mim-width. Theoretical Computer Science, 814:28–48, 2020. doi:10.1016/j.tcs.2020.01.007.
- Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988. doi:10.1007/978-3-642-97881-4.
- Difference graphs. Discrete Applied Mathematics, 28(1):35–44, 1990. doi:10.1016/0166-218X(90)90092-Q.
- On the d𝑑ditalic_d-claw vertex deletion problem. Algorithmica, 86(2):505–525, 2024. doi:10.1007/S00453-023-01144-W.
- Sang il Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B, 95(1):79–100, 2005. doi:10.1016/j.jctb.2005.03.003.
- Mim-width III. Graph powers and generalized distance domination problems. Theoretical Computer Science, 796:216–236, 2019. doi:10.1016/j.tcs.2019.09.012.
- A unified polynomial-time algorithm for feedback vertex set on graphs of bounded mim-width. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2018.42.
- Mim-width I. Induced path problems. Discrete Applied Mathematics, 278:153–168, 2020. doi:10.1016/j.dam.2019.06.026.
- Mim-width II. The feedback vertex set problem. Algorithmica, 82(1):118–145, 2020. doi:10.1007/s00453-019-00607-3.
- Structural parameterizations of b𝑏bitalic_b-coloring. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation (ISAAC 2023), volume 283 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ISAAC.2023.40.
- A width parameter useful for chordal and co-comparability graphs. Theoretical Computer Science, 704:1–17, 2017. doi:10.1016/j.tcs.2017.09.006.
- Complexity of the cluster vertex deletion problem on H𝐻Hitalic_H-free graphs. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 68:1–68:10. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.68.
- The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:10.1016/0022-0000(80)90060-4.
- Stefan Mengel. Lower bounds on the mim-width of some graph classes. Discrete Applied Mathematics, 248:28–32, 2018. doi:10.1016/j.dam.2017.04.043.
- On algorithmic applications of sim-width and mim-width of (H1,H2)subscript𝐻1subscript𝐻2(H_{1},H_{2})( italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )-free graphs. Theoretical Computer Science, 955:113825, 2023. doi:10.1016/j.tcs.2023.113825.
- Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae, 15(2):307–309, 1974.
- Hardness of computing width parameters based on branch decompositions over the vertex set. Theoretical Computer Science, 615:120–125, 2016. doi:10.1016/j.tcs.2015.11.039.
- Minimization and Parameterized Variants of Vertex Partition Problems on Graphs. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation (ISAAC 2020), volume 181 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:13, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ISAAC.2020.40.
- Algorithms for vertex partitioning problems on partial k𝑘kitalic_k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997. doi:10.1137/S0895480194275825.
- Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.
- Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310–327, 1981. doi:10.1137/0210022.