Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A width parameter useful for chordal and co-comparability graphs (1606.08087v3)

Published 26 Jun 2016 in cs.DS and math.CO

Abstract: We investigate new graph classes of bounded mim-width, strictly extending interval graphs and permutation graphs. The graphs $K_t \boxminus K_t$ and $K_t \boxminus S_t$ are graphs obtained from the disjoint union of two cliques of size $t$, and one clique of size $t$ and one independent set of size $t$ respectively, by adding a perfect matching. We prove that : (1) interval graphs are $(K_3\boxminus S_3)$-free chordal graphs; and $(K_t\boxminus S_t)$-free chordal graphs have mim-width at most $t-1$, (2) permutation graphs are $(K_3\boxminus K_3)$-free co-comparability graphs; and $(K_t\boxminus K_t)$-free co-comparability graphs have mim-width at most $t-1$, (3) chordal graphs and co-comparability graphs have unbounded mim-width in general. We obtain several algorithmic consequences; for instance, while Minimum Dominating Set is NP-complete on chordal graphs, it can be solved in time $n{\mathcal{O}(t)}$ on $(K_t\boxminus S_t)$-free chordal graphs. The third statement strengthens a result of Belmonte and Vatshelle stating that either those classes do not have constant mim-width or a decomposition with constant mim-width cannot be computed in polynomial time unless $P=NP$. We generalize these ideas to bigger graph classes. We introduce a new width parameter sim-width, of stronger modelling power than mim-width, by making a small change in the definition of mim-width. We prove that chordal graphs and co-comparability graphs have sim-width at most 1. We investigate a way to bound mim-width for graphs of bounded sim-width by excluding $K_t\boxminus K_t$ and $K_t\boxminus S_t$ as induced minors or induced subgraphs, and give algorithmic consequences. Lastly, we show that circle graphs have unbounded sim-width, and thus also unbounded mim-width.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dong Yeap Kang (19 papers)
  2. O-joung Kwon (63 papers)
  3. Torstein J. F. Strømme (5 papers)
  4. Jan Arne Telle (27 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.