Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Unsupervised Deep Neural Network Approach To Solve Bosonic Systems (2405.15488v1)

Published 24 May 2024 in cond-mat.mtrl-sci and cond-mat.quant-gas

Abstract: The simulation of quantum many-body systems poses a significant challenge in physics due to the exponential scaling of Hilbert space with the number of particles. Traditional methods often struggle with large system sizes and frustrated lattices. In this research article, we present a novel algorithm that leverages the power of deep neural networks combined with Markov Chain Monte Carlo simulation to address these limitations. Our method introduces a neural network architecture specifically designed to represent bosonic quantum states on a 1D lattice chain. We successfully achieve the ground state of the Bose-Hubbard model, demonstrating the superiority of the adaptive momentum optimizer for convergence speed and stability. Notably, our approach offers flexibility in simulating various lattice geometries and potentially larger system sizes, making it a valuable tool for exploring complex quantum phenomena. This work represents a substantial advancement in the field of quantum simulation, opening new possibilities for investigating previously challenging systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
  2. T. Ohtsuki and T. Ohtsuki, Deep learning the quantum phase transitions in random two-dimensional electron systems, Journal of the Physical Society of Japan 85, 123706 (2016).
  3. J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nature Physics 2017 13:5 13, 431 (2017).
  4. E. P. Van Nieuwenburg, Y. H. Liu, and S. D. Huber, Learning phase transitions by confusion, Nature Physics 13, 435 (2017).
  5. Y. Zhang and E.-A. Kim, Quantum loop topography for machine learning, Phys. Rev. Lett. 118, 216401 (2017).
  6. T. Ohtsuki and T. Ohtsuki, Deep learning the quantum phase transitions in random electron systems: Applications to three dimensions, Journal of the Physical Society of Japan 86, 044708 (2017).
  7. A. Tanaka and A. Tomiya, Detection of phase transition via convolutional neural networks, Journal of the Physical Society of Japan 86 (2017).
  8. P. Broecker, F. F. Assaad, and S. Trebst, Quantum phase recognition via unsupervised machine learning, arXiv:1707.00663  (2017b).
  9. K. Ch’Ng, N. Vazquez, and E. Khatami, Unsupervised machine learning account of magnetic transitions in the hubbard model, Phys. Rev. E 97 (2018).
  10. P. Zhang, H. Shen, and H. Zhai, Machine learning topological invariants with neural networks, Phys. Rev. Lett. 120 (2018).
  11. T. Mano and T. Ohtsuki, Phase diagrams of three-dimensional anderson and quantum percolation models using deep three-dimensional convolutional neural network, Journal of the Physical Society of Japan 86 (2017).
  12. G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602 (2017).
  13. A. W. Sandvik, Stochastic series expansion method with operator-loop update, Phys. Rev. B 59, R14157 (1999).
  14. R. Orús, Tensor networks for complex quantum systems, Nature Reviews Physics 2019 1:9 1, 538 (2019).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com