Residual eccentricity as a systematic uncertainty on the formation channels of binary black holes (2405.14945v2)
Abstract: Resolving the formation channel(s) of merging binary black holes is a key goal in gravitational-wave astronomy. The orbital eccentricity is believed to be a precious tracer of the underlying formation pathway, but is largely dissipated during the usually long inspiral between black hole formation and merger. Most gravitational-wave sources are thus expected to enter the sensitivity windows of current detectors on configurations that are compatible with quasi-circular orbits. In this paper, we investigate the impact of "negligible" residual eccentricity -- lower than currently detectable by LIGO/Virgo -- on our ability to infer the formation history of binary black holes, focusing in particular on their spin orientations. We trace the evolution of both observed and synthetic gravitational-wave events backward in time, while resampling their residual eccentricities to values that are below the detectability threshold. Eccentricities in-band as low as $\sim 10{-4}$ can lead to significant biases when reconstructing the spin directions, especially in the case of loud, highly precessing systems. Residual eccentricity thus act like a systematic uncertainty for our astrophysical inference. As a mitigation strategy, one can marginalize the posterior distribution over the residual eccentricity using astrophysical predictions.
- B. P. Abbott et al., Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al., Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-qc] .
- R. Abbott et al., Phys. Rev. D 109, 022001 (2024), arXiv:2108.01045 [gr-qc] .
- R. Abbott et al., Phys. Rev. X 13, 041039 (2023a), arXiv:2111.03606 [gr-qc] .
- M. Mapelli, in Handbook of Gravitational Wave Astronomy (Springer, 2021) p. 16.
- D. Gerosa and M. Fishbach, Nat. Astron. 5, 749 (2021), arXiv:2105.03439 [astro-ph.HE] .
- I. Mandel and A. Farmer, Phys. Rep. 955, 1 (2022), arXiv:1806.05820 [astro-ph.HE] .
- I. Mandel and F. S. Broekgaarden, Living Rev. Relativ. 25, 1 (2022), arXiv:2107.14239 [astro-ph.HE] .
- A. Q. Cheng, M. Zevin, and S. Vitale, Astrophys. J. 955, 127 (2023), arXiv:2307.03129 [astro-ph.HE] .
- S. Stevenson, C. P. L. Berry, and I. Mandel, Mon. Not. R. Astron. Soc. 471, 2801 (2017), arXiv:1703.06873 [astro-ph.HE] .
- A. Olejak and K. Belczynski, Astrophys. J. Lett. 921, L2 (2021), arXiv:2109.06872 [astro-ph.HE] .
- S. Banerjee, A. Olejak, and K. Belczynski, Astrophys. J. 953, 80 (2023), arXiv:2302.10851 [astro-ph.HE] .
- J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, Astrophys. J. 784, 71 (2014), arXiv:1308.2964 [astro-ph.HE] .
- J. Samsing, Phys. Rev. D 97, 103014 (2018), arXiv:1711.07452 [astro-ph.HE] .
- L. E. Kidder, Phys. Rev. D 52, 821 (1995), arXiv:gr-qc/9506022 [gr-qc] .
- I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Mon. Not. R. Astron. Soc. 490, 5210 (2019), arXiv:1909.05466 [astro-ph.HE] .
- I. M. Romero-Shaw, D. Gerosa, and N. Loutrel, Mon. Not. R. Astron. Soc. 519, 5352 (2023), arXiv:2211.07528 [astro-ph.HE] .
- G. Fumagalli and D. Gerosa, Phys. Rev. D 108, 124055 (2023), arXiv:2310.16893 [gr-qc] .
- M. Mould and D. Gerosa, Phys. Rev. D 105, 024076 (2022), arXiv:2110.05507 [astro-ph.HE] .
- N. K. Johnson-McDaniel, S. Kulkarni, and A. Gupta, Phys. Rev. D 106, 023001 (2022), arXiv:2107.11902 [astro-ph.HE] .
- R. Abbott et al., Phys. Rev. X 13, 011048 (2023b), arXiv:2111.03634 [astro-ph.HE] .
- B. P. Abbott et al., Astrophys. J. 883, 149 (2019b).
- A. G. Abac et al., (2023), arXiv:2308.03822 [astro-ph.HE] .
- I. Romero-Shaw, P. D. Lasky, and E. Thrane, Astrophys. J. 940, 171 (2022), arXiv:2206.14695 [astro-ph.HE] .
- P. C. Peters, Phys. Rev. 136, 1224 (1964).
- É. Racine, Phys. Rev. D 78, 044021 (2008), arXiv:0803.1820 [gr-qc] .
- P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D 91, 024043 (2015), arXiv:1408.1810 [gr-qc] .
- I. Romero-Shaw, P. D. Lasky, and E. Thrane, Astrophys. J. Lett. 921, L31 (2021), arXiv:2108.01284 [astro-ph.HE] .
- M. Mapelli, Frontiers in Astronomy and Space Sciences 7, 38 (2020), arXiv:2105.12455 [astro-ph.HE] .
- F. Antonini and M. Gieles, Mon. Not. R. Astron. Soc. 492, 2936 (2020), arXiv:1906.11855 [astro-ph.HE] .
- V. De Renzis and D. Gerosa, github.com/ViolaDeRenzis/twoprecessingspins, doi.org/10.5281/zenodo.6777952 (2022).
- C. J. Moore and D. Gerosa, Phys. Rev. D 104, 083008 (2021), arXiv:2108.02462 [gr-qc] .
- A. Klein, (2021), arXiv:2106.10291 [gr-qc] .
- L. S. Finn and D. F. Chernoff, Phys. Rev. D 47, 2198 (1993), arXiv:gr-qc/9301003 [gr-qc] .
- D. Gerosa and M. Bellotti, Class. Quantum Grav. 41, 125002 (2024), arXiv:2404.16930 [astro-ph.HE] .
- D. Gerosa, github.com/dgerosa/gwdet, doi.org/10.5281/zenodo.889966 (2017).
- P. Saini, Mon. Not. R. Astron. Soc. 528, 833 (2024), arXiv:2308.07565 [astro-ph.HE] .
- J. Stegmann and F. Antonini, Phys. Rev. D 103, 063007 (2021), arXiv:2012.06329 [astro-ph.HE] .
- N. Steinle and M. Kesden, Phys. Rev. D 103, 063032 (2021), arXiv:2010.00078 [astro-ph.HE] .
- T. M. Tauris, Astrophys. J. 938, 66 (2022), arXiv:2205.02541 [astro-ph.HE] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.