Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Arresting Quantum Chaos Dynamically in Transmon Arrays (2405.14935v2)

Published 23 May 2024 in cond-mat.str-el, cond-mat.mes-hall, cond-mat.quant-gas, cond-mat.stat-mech, and hep-th

Abstract: Ergodic quantum many-body systems evolving under unitary time dynamics typically lose memory of their initial state via information scrambling. Here we consider a paradigmatic translationally invariant many-body Hamiltonian of interacting bosons -- a Josephson junction array in the transmon regime -- in the presence of a strong Floquet drive. Generically, such a time-dependent drive is expected to heat the system to an effectively infinite temperature, featureless state in the late-time limit. However, using numerical exact-diagonalization we find evidence of special ratios of the drive amplitude and frequency where the system develops {\it emergent} conservation laws, and {\it approximate} integrability. Remarkably, at these same set of points, the Lyapunov exponent associated with the semi-classical dynamics for the coupled many-body equations of motion drops by orders of magnitude, arresting the growth of chaos. We supplement our numerical results with an analytical Floquet-Magnus expansion that includes higher-order corrections, and capture the slow dynamics that controls decay away from exact freezing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Phys. Rev. A 43, 2046 (1991).
  2. M. Srednicki, “Chaos and quantum thermalization,” Phys. Rev. E 50, 888 (1994).
  3. H. Tasaki, “From quantum dynamics to the canonical distribution: General picture and a rigorous example,” Phys. Rev. Lett. 80, 1373 (1998).
  4. M. Rigol, V. Dunjko,  and M. Olshanii, “Thermalization and its mechanism for generic isolated quantum systems,” Nature 452, 854 (2008).
  5. D. M. Basko, I. L. Aleiner,  and B. L. Altshuler, “Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states,” Annals of physics 321, 1126 (2006).
  6. I. V. Gornyi, A. D. Mirlin,  and D. G. Polyakov, “Interacting electrons in disordered wires: Anderson localization and low-t𝑡titalic_t transport,” Phys. Rev. Lett. 95, 206603 (2005).
  7. R. Nandkishore and D. A. Huse, “Many-body localization and thermalization in quantum statistical mechanics,” Annual Review of Condensed Matter Physics 6, 15 (2015), http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726 .
  8. E. Altman and R. Vosk, “Universal dynamics and renormalization in many-body-localized systems,” Annual Review of Condensed Matter Physics 6, 383 (2015), http://dx.doi.org/10.1146/annurev-conmatphys-031214-014701 .
  9. D. A. Abanin, E. Altman, I. Bloch,  and M. Serbyn, “Colloquium: Many-body localization, thermalization, and entanglement,” Rev. Mod. Phys. 91, 021001 (2019).
  10. M. Serbyn, D. A. Abanin,  and Z. Papić, “Quantum many-body scars and weak breaking of ergodicity,” Nature Physics 17, 675 (2021).
  11. A. Chandran, T. Iadecola, V. Khemani,  and R. Moessner, “Quantum many-body scars: A quasiparticle perspective,” Annual Review of Condensed Matter Physics 14, 443 (2023).
  12. C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,  and Z. Papić, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics 14, 745 (2018).
  13. W. De Roeck and F. m. c. Huveneers, “Stability and instability towards delocalization in many-body localization systems,” Phys. Rev. B 95, 155129 (2017).
  14. S. Gopalakrishnan and D. A. Huse, “Instability of many-body localized systems as a phase transition in a nonstandard thermodynamic limit,” Phys. Rev. B 99, 134305 (2019).
  15. J. vSuntajs, J. Bonvca, T. c. v. Prosen,  and L. Vidmar, “Quantum chaos challenges many-body localization,” Phys. Rev. E 102, 062144 (2020).
  16. A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz,  and D. A. Huse, “Avalanches and many-body resonances in many-body localized systems,” Phys. Rev. B 105, 174205 (2022).
  17. D. Sels and A. Polkovnikov, “Thermalization of dilute impurities in one-dimensional spin chains,” Phys. Rev. X 13, 011041 (2023).
  18. K. Sacha and J. Zakrzewski, “Time crystals: a review,” Reports on Progress in Physics 81, 016401 (2017).
  19. D. V. Else, C. Monroe, C. Nayak,  and N. Y. Yao, “Discrete time crystals,” Annual Review of Condensed Matter Physics 11, 467 (2020).
  20. M. P. Zaletel, M. Lukin, C. Monroe, C. Nayak, F. Wilczek,  and N. Y. Yao, “Colloquium: Quantum and classical discrete time crystals,” Rev. Mod. Phys. 95, 031001 (2023).
  21. P. Ponte, Z. Papić, F. m. c. Huveneers,  and D. A. Abanin, “Many-body localization in periodically driven systems,” Phys. Rev. Lett. 114, 140401 (2015).
  22. A. Lazarides, A. Das,  and R. Moessner, “Equilibrium states of generic quantum systems subject to periodic driving,” Phys. Rev. E 90, 012110 (2014).
  23. L. D’Alessio and M. Rigol, “Long-time behavior of isolated periodically driven interacting lattice systems,” Phys. Rev. X 4, 041048 (2014).
  24. D. A. Abanin, W. De Roeck, W. W. Ho,  and F. m. c. Huveneers, “Effective hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems,” Phys. Rev. B 95, 014112 (2017a).
  25. D. Abanin, W. De Roeck, W. W. Ho,  and F. Huveneers, “A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems,” Communications in Mathematical Physics 354, 809 (2017b).
  26. T. Mori, “Floquet prethermalization in periodically driven classical spin systems,” Phys. Rev. B 98, 104303 (2018).
  27. N. O’Dea, F. Burnell, A. Chandran,  and V. Khemani, “Prethermal stability of eigenstates under high frequency floquet driving,” Phys. Rev. Lett. 132, 100401 (2024).
  28. A. Das, “Exotic freezing of response in a quantum many-body system,” Phys. Rev. B 82, 172402 (2010).
  29. A. Haldar and A. Das, “Statistical mechanics of floquet quantum matter: exact and emergent conservation laws,” Journal of Physics: Condensed Matter 34, 234001 (2022).
  30. S. Bhattacharyya, A. Das,  and S. Dasgupta, “Transverse ising chain under periodic instantaneous quenches: Dynamical many-body freezing and emergence of slow solitary oscillations,” Phys. Rev. B 86, 054410 (2012).
  31. S. S. Hegde, H. Katiyar, T. S. Mahesh,  and A. Das, “Freezing a quantum magnet by repeated quantum interference: An experimental realization,” Phys. Rev. B 90, 174407 (2014).
  32. A. Haldar, R. Moessner,  and A. Das, “Onset of floquet thermalization,” Phys. Rev. B 97, 245122 (2018).
  33. A. Haldar, D. Sen, R. Moessner,  and A. Das, “Dynamical freezing and scar points in strongly driven floquet matter: Resonance vs emergent conservation laws,” Phys. Rev. X 11, 021008 (2021).
  34. S. Ghosh, I. Paul,  and K. Sengupta, “Prethermal fragmentation in a periodically driven fermionic chain,” Phys. Rev. Lett. 130, 120401 (2023).
  35. B. Mukherjee, A. Sen, D. Sen,  and K. Sengupta, “Dynamics of the vacuum state in a periodically driven rydberg chain,” Phys. Rev. B 102, 075123 (2020a).
  36. B. Mukherjee, S. Nandy, A. Sen, D. Sen,  and K. Sengupta, “Collapse and revival of quantum many-body scars via floquet engineering,” Phys. Rev. B 101, 245107 (2020b).
  37. T. Banerjee and K. Sengupta, “Emergent conservation in the floquet dynamics of integrable non-hermitian models,” Phys. Rev. B 107, 155117 (2023).
  38. S. Ghosh, I. Paul,  and K. Sengupta, “Signatures of fragmentation for periodically driven fermions,”  (2024), arXiv:2404.04328 [cond-mat.str-el] .
  39. A. Sen, D. Sen,  and K. Sengupta, “Analytic approaches to periodically driven closed quantum systems: methods and applications,” Journal of Physics: Condensed Matter 33, 443003 (2021).
  40. S. Aditya and D. Sen, “Dynamical localization and slow thermalization in a class of disorder-free periodically driven one-dimensional interacting systems,” SciPost Phys. Core 6, 083 (2023).
  41. A. Das, Private communication.
  42. H. Guo, R. Mukherjee,  and D. Chowdhury, “Dynamical freezing in exactly solvable models of driven chaotic quantum dots,”  (2024), arXiv:2405.01627 [cond-mat.str-el] .
  43. A. Blais, A. L. Grimsmo, S. M. Girvin,  and A. Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys. 93, 025005 (2021).
  44. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,  and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box,” Phys. Rev. A 76, 042319 (2007).
  45. J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin,  and R. J. Schoelkopf, “Suppressing charge noise decoherence in superconducting charge qubits,” Phys. Rev. B 77, 180502 (2008).
  46. S.-D. Börner, C. Berke, D. P. DiVincenzo, S. Trebst,  and A. Altland, “Classical chaos in quantum computers,”  (2023), arXiv:2304.14435 [quant-ph] .
  47. C. Berke, E. Varvelis, S. Trebst, A. Altland,  and D. P. DiVincenzo, “Transmon platform for quantum computing challenged by chaotic fluctuations,” Nature communications 13, 2495 (2022).
  48. F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson,  and W. D. Oliver, “Tunable coupling scheme for implementing high-fidelity two-qubit gates,” Phys. Rev. Appl. 10, 054062 (2018).
  49. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505 (2019).
  50. https://quantumai.google.
  51. A. D. Córcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross, K. Temme, P. D. Nation, M. Steffen,  and J. M. Gambetta, “Challenges and opportunities of near-term quantum computing systems,” Proceedings of the IEEE 108, 1338 (2020).
  52. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
  53. F. Nathan, L. O’Brien, K. Noh, M. H. Matheny, A. L. Grimsmo, L. Jiang,  and G. Refael, “Self-correcting gkp qubit and gates in a driven-dissipative circuit,”  (2024), arXiv:2405.05671 [cond-mat.mes-hall] .
  54. S. M. Girvin, “Circuit qed: superconducting qubits coupled to microwave photons,”  (2014).
  55. E. Bairey, G. Refael,  and N. H. Lindner, “Driving induced many-body localization,” Phys. Rev. B 96, 020201 (2017).
  56. A. Eckardt, “Colloquium: Atomic quantum gases in periodically driven optical lattices,” Rev. Mod. Phys. 89, 011004 (2017).
  57. T. E. Roth, R. Ma,  and W. C. Chew, “An introduction to the transmon qubit for electromagnetic engineers,” arXiv preprint arXiv:2106.11352  (2021).
  58. L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon,  and V. E. Manucharyan, “High-coherence fluxonium qubit,” Phys. Rev. X 9, 041041 (2019).
  59. A. Gyenis, A. Di Paolo, J. Koch, A. Blais, A. A. Houck,  and D. I. Schuster, “Moving beyond the transmon: Noise-protected superconducting quantum circuits,” PRX Quantum 2, 030101 (2021).
  60. https://www.ibm.com/quantum/technology.
  61. J. Cohen, A. Petrescu, R. Shillito,  and A. Blais, “Reminiscence of classical chaos in driven transmons,” PRX Quantum 4, 020312 (2023).
  62. A. Eckardt and E. Anisimovas, “High-frequency approximation for periodically driven quantum systems from a floquet-space perspective,” New journal of physics 17, 093039 (2015).
  63. M. Bukov, L. D’Alessio,  and A. Polkovnikov, “Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering,” Advances in Physics 64, 139 (2015).
  64. X. Wang, S. Ghose, B. C. Sanders,  and B. Hu, “Entanglement as a signature of quantum chaos,” Phys. Rev. E 70, 016217 (2004).
  65. L. Vidmar and M. Rigol, “Entanglement entropy of eigenstates of quantum chaotic hamiltonians,” Phys. Rev. Lett. 119, 220603 (2017).
  66. D. Hahn, P. A. McClarty,  and D. J. Luitz, “Information dynamics in a model with Hilbert space fragmentation,” SciPost Phys. 11, 074 (2021).
  67. C. Tsitouras, “Runge–kutta pairs of order 5 (4) satisfying only the first column simplifying assumption,” Computers & Mathematics with Applications 62, 770 (2011).
  68. G. Benettin, L. Galgani, A. Giorgilli,  and J.-M. Strelcyn, “Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: Theory,” Meccanica 15, 9 (1980).
  69. G. Bennetin, L. Galgani, A. Giorgilli,  and J.-M. Strelcyn, “Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: A method for computing all of them,” Meccanica 15, 27 (1980).
  70. G. Datseris, “Dynamicalsystems. jl: A julia software library for chaos and nonlinear dynamics,” Journal of Open Source Software 3, 598 (2018).
  71. S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H. Devoret, R. J. Schoelkopf,  and S. M. Girvin, “Black-box superconducting circuit quantization,” Phys. Rev. Lett. 108, 240502 (2012).
  72. D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Campbell, Y. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, T. White, J. Wenner, A. N. Korotkov,  and J. M. Martinis, “Measurement-induced state transitions in a superconducting qubit: Beyond the rotating wave approximation,” Phys. Rev. Lett. 117, 190503 (2016).
  73. P. Weinberg and M. Bukov, “Quspin: a python package for dynamics and exact diagonalisation of quantum many body systems part i: spin chains,” SciPost Physics 2, 003 (2017).
  74. P. Weinberg and M. Bukov, “Quspin: a python package for dynamics and exact diagonalisation of quantum many body systems. part ii: bosons, fermions and higher spins,” SciPost Physics 7, 020 (2019).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com