Distilling Vision-Language Pretraining for Efficient Cross-Modal Retrieval (2405.14726v1)
Abstract: `Learning to hash'' is a practical solution for efficient retrieval, offering fast search speed and low storage cost. It is widely applied in various applications, such as image-text cross-modal search. In this paper, we explore the potential of enhancing the performance of learning to hash with the proliferation of powerful large pre-trained models, such as Vision-Language Pre-training (VLP) models. We introduce a novel method named Distillation for Cross-Modal Quantization (DCMQ), which leverages the rich semantic knowledge of VLP models to improve hash representation learning. Specifically, we use the VLP as a
teacher' to distill knowledge into a `student' hashing model equipped with codebooks. This process involves the replacement of supervised labels, which are composed of multi-hot vectors and lack semantics, with the rich semantics of VLP. In the end, we apply a transformation termed Normalization with Paired Consistency (NPC) to achieve a discriminative target for distillation. Further, we introduce a new quantization method, Product Quantization with Gumbel (PQG) that promotes balanced codebook learning, thereby improving the retrieval performance. Extensive benchmark testing demonstrates that DCMQ consistently outperforms existing supervised cross-modal hashing approaches, showcasing its significant potential.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.