Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Hybrid Quantum-Classical Normalizing Flow (2405.13808v1)

Published 22 May 2024 in quant-ph

Abstract: With the rapid development of quantum computing technology, we have entered the era of noisy intermediate-scale quantum (NISQ) computers. Therefore, designing quantum algorithms that adapt to the hardware conditions of current NISQ devices and can preliminarily solve some practical problems has become the focus of researchers. In this paper, we focus on quantum generative models in the field of quantum machine learning, and propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits. Based on the ideas of classical normalizing flow models and the characteristics of parameterized quantum circuits, we cleverly design the form of the ansatz and the hybrid method of quantum and classical computing, and derive the form of the loss function in the case that quantum computing is involved. We test our model on the image generation problem. Experimental results show that our model is capable of generating images of good quality. Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr\'echet inception distance (FID) score, and compared with classical generative models, we can complete the image generation task with significantly fewer parameters. These results prove the advantage of our proposed model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com