Sparse Induced Subgraphs of Large Treewidth (2405.13797v1)
Abstract: Motivated by an induced counterpart of treewidth sparsifiers (i.e., sparse subgraphs keeping the treewidth large) provided by the celebrated Grid Minor theorem of Robertson and Seymour [JCTB '86] or by a classic result of Chekuri and Chuzhoy [SODA '15], we show that for any natural numbers $t$ and $w$, and real $\varepsilon > 0$, there is an integer $W := W(t,w,\varepsilon)$ such that every graph with treewidth at least $W$ and no $K_{t,t}$ subgraph admits a 2-connected $n$-vertex induced subgraph with treewidth at least $w$ and at most $(1+\varepsilon)n$ edges. The induced subgraph is either a subdivided wall, or its line graph, or a spanning supergraph of a subdivided biclique. This in particular extends a result of Weissauer [JCTB '19] that graphs of large treewidth have a large biclique subgraph or a long induced cycle.
- On the tree-width of even-hole-free graphs. Eur. J. Comb., 98:103394, 2021. doi:10.1016/j.ejc.2021.103394.
- Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs. J. Comb. Theory, Ser. B, 164:443–472, 2024. doi:https://doi.org/10.1016/j.jctb.2023.10.008.
- Sparse graphs with bounded induced cycle packing number have logarithmic treewidth. J. Comb. Theory, Ser. B, 167:215–249, 2024. doi:https://doi.org/10.1016/j.jctb.2024.03.003.
- On polynomial degree-boundedness, 2023. arXiv:2311.03341.
- Degree-3 treewidth sparsifiers. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 242–255. SIAM, 2015. doi:10.1137/1.9781611973730.19.
- On treewidth and maximum cliques, 2024. arXiv:2405.07471.
- Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
- James Davies. Oberwolfach report 1/2022. doi:10.4171/OWR/2022/1., 2022.
- Zdenek Dvorák. Induced subdivisions and bounded expansion. Eur. J. Comb., 69:143–148, 2018. doi:10.1016/j.ejc.2017.10.004.
- Contraction obstructions for treewidth. J. Comb. Theory, Ser. B, 101(5):302–314, 2011. doi:10.1016/j.jctb.2011.02.008.
- Induced subdivisions in ks,ssubscript𝑘𝑠𝑠k_{s,s}italic_k start_POSTSUBSCRIPT italic_s , italic_s end_POSTSUBSCRIPT-free graphs with polynomial average degree, 2024. arXiv:2310.18452.
- Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comput., 44(1):114–159, 2015. doi:10.1137/120892234.
- Sepehr Hajebi. Problem 13. Open problems for the second 2022 Barbados workshop, https://web.math.princeton.edu/~tunghn/2022openproblems.pdf, 2022. URL: https://web.math.princeton.edu/~tunghn/2022openproblems.pdf.
- Sepehr Hajebi. Chordal graphs, even-hole-free graphs and sparse obstructions to bounded treewidth, 2024. arXiv:2401.01299.
- Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184–192. IEEE, 2021. doi:10.1109/FOCS52979.2021.00026.
- Tuukka Korhonen. Grid induced minor theorem for graphs of small degree. J. Comb. Theory, Ser. B, 160:206–214, 2023. doi:10.1016/j.jctb.2023.01.002.
- Induced-minor-free graphs: Separator theorem, subexponential algorithms, and improved hardness of recognition. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 5249–5275. SIAM, 2024. doi:10.1137/1.9781611977912.188.
- Induced subdivisions in Ks, ss, s{}_{\mbox{s, s}}start_FLOATSUBSCRIPT s, s end_FLOATSUBSCRIPT-free graphs of large average degree. Comb., 24(2):287–304, 2004. doi:10.1007/s00493-004-0017-8.
- Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.
- Andrei Cosmin Pohoaţă. Unavoidable induced subgraphs of large graphs. 2014.
- Frank P. Ramsey. On a problem of formal logic. In Proc. London Math. Soc. series 2, volume 30 of 264-286, 1930.
- Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.
- Graph searching and a min-max theorem for tree-width. J. Comb. Theory, Ser. B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.
- (theta, triangle)-free and (even hole, K44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT)-free graphs - part 1: Layered wheels. J. Graph Theory, 97(4):475–509, 2021. doi:10.1002/jgt.22666.
- Daniel Weißauer. In absence of long chordless cycles, large tree-width becomes a local phenomenon. J. Comb. Theory, Ser. B, 139:342–352, 2019. doi:10.1016/j.jctb.2019.04.004.