Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Product structure of graph classes with bounded treewidth (2206.02395v2)

Published 6 Jun 2022 in math.CO and cs.DM

Abstract: We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the "underlying treewidth" of a graph class $\mathcal{G}$ to be the minimum non-negative integer $c$ such that, for some function $f$, for every graph ${G \in \mathcal{G}}$ there is a graph $H$ with ${\text{tw}(H) \leq c}$ such that $G$ is isomorphic to a subgraph of ${H \boxtimes K_{f(\text{tw}(G))}}$. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth 3; the class of $K_{s,t}$-minor-free graphs has underlying treewidth $s$ (for ${t \geq \max{s,3}}$); and the class of $K_t$-minor-free graphs has underlying treewidth ${t-2}$. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no $H$ subgraph has bounded underlying treewidth if and only if every component of $H$ is a subdivided star, and that the class of graphs with no induced $H$ subgraph has bounded underlying treewidth if and only if every component of $H$ is a star.

Citations (18)

Summary

We haven't generated a summary for this paper yet.