Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows (2405.13691v2)

Published 22 May 2024 in physics.flu-dyn, cs.NA, math.NA, math.PR, and stat.ML

Abstract: In this paper we introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations, which is an extension of so called Deep Random Vortex Methods (DRVM), that does not require the knowledge of the Biot--Savart kernel associated to the computational domain. Our algorithm uses a Neural Network (NN), that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex Dynamics. The neural vorticity estimator is then combined with traditional numerical PDE-solvers, which can be considered as a final implicit linear layer of the network, for the Poisson equation to compute the velocity field. The main advantage of our method compared to the standard DRVM and other NN-based numerical algorithms is that it strictly enforces physical properties, such as incompressibility or (no slip) boundary conditions, which might be hard to guarantee otherwise. The approximation abilities of our algorithm, and its capability for incorporating measurement data, are validated by several numerical experiments.

Summary

We haven't generated a summary for this paper yet.