Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hidden semi-Markov models with inhomogeneous state dwell-time distributions (2405.13553v1)

Published 22 May 2024 in stat.ME and stat.AP

Abstract: The well-established methodology for the estimation of hidden semi-Markov models (HSMMs) as hidden Markov models (HMMs) with extended state spaces is further developed to incorporate covariate influences across all aspects of the state process model, in particular, regarding the distributions governing the state dwell time. The special case of periodically varying covariate effects on the state dwell-time distributions - and possibly the conditional transition probabilities - is examined in detail to derive important properties of such models, namely the periodically varying unconditional state distribution as well as the overall state dwell-time distribution. Through simulation studies, we ascertain key properties of these models and develop recommendations for hyperparameter settings. Furthermore, we provide a case study involving an HSMM with periodically varying dwell-time distributions to analyse the movement trajectory of an arctic muskox, demonstrating the practical relevance of the developed methodology.

Summary

We haven't generated a summary for this paper yet.