Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Environmental Data (2109.09949v1)

Published 21 Sep 2021 in stat.AP

Abstract: Environmental time series data observed at high frequencies can be studied with approaches such as hidden Markov and semi-Markov models (HMM and HSMM). HSMMs extend the HMM by explicitly modeling the time spent in each state. In a discrete-time HSMM, the duration in each state can be modeled with a zero-truncated Poisson distribution, where the duration parameter may be state-specific but constant in time. We extend the HSMM by allowing the state-specific duration parameters to vary in time and model them as a function of known covariates observed over a period of time leading up to a state transition. In addition, we propose a data subsampling approach given that high-frequency data can violate the conditional independence assumption of the HSMM. We apply the model to high-frequency data collected by an instrumented buoy in Lake Mendota. We model the phycocyanin concentration, which is used in aquatic systems to estimate the relative abundance of blue-green algae, and identify important time-varying effects associated with the duration in each state.

Summary

We haven't generated a summary for this paper yet.