Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum gravitational corrections to the Schwarzschild spacetime and quasinormal frequencies (2405.13552v2)

Published 22 May 2024 in gr-qc

Abstract: Quantum gravitational corrections to the entropy of the Schwarzschild black hole, derived using the Wald entropy formula within an effective field theory framework, were presented in [X. Calmet, F. Kuipers Phys.Rev.D 104 (2021) 6, 066012]. These corrections result in a Schwarzschild spacetime that is deformed by the quantum correction. However, it is observed that the proposed quantum-corrected metric describes not a black hole, but a wormhole. Nevertheless, further expansion of the metric function in terms of the quantum correction parameter yields a well-defined black hole metric whose geometry closely resembles that of a wormhole. We also explore methods for distinguishing between these quantum-corrected spacetimes based on the quasinormal frequencies they emit. We show that while the fundamental mode deviates from the Schwarzschild limit only mildly, the first few overtones deviate at a strongly increasing rate, creating a characteristic ``sound'' of the event horizon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
  2. B. P. Abbott et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101, 2017.
  3. R. Abbott et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett., 896(2):L44, 2020.
  4. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals. Phys. Rev. D, 95(10):103012, 2017.
  5. Bardeen spacetime as a quantum corrected Schwarzschild black hole: Quasinormal modes and Hawking radiation. Phys. Rev. D, 108(10):104054, 2023.
  6. Quasinormal modes of a holonomy corrected Schwarzschild black hole. Phys. Rev. D, 107(10):104016, 2023.
  7. Shadow and quasinormal modes of a rotating loop quantum black hole. Phys. Rev. D, 101(8):084001, 2020. [Erratum: Phys.Rev.D 103, 089902 (2021)].
  8. The ringing of quantum corrected Schwarzschild black hole with GUP. Commun. Theor. Phys., 74(8):085404, 2022.
  9. Peculiar properties in quasi-normal spectra from loop quantum gravity effect. 1 2023.
  10. Shadow and stability of quantum-corrected black holes. Eur. Phys. J. C, 83(7):619, 2023.
  11. Quasinormal modes and thermodynamic properties of GUP-corrected Schwarzschild black hole surrounded by quintessence. 6 2022.
  12. Polar gravitational perturbations and quasinormal modes of a loop quantum gravity black hole. Phys. Rev. D, 102(4):044063, 2020.
  13. Quasinormal modes of scalar perturbation around a quantum-corrected Schwarzschild black hole. Astrophys. Space Sci., 350(2):721–726, 2014.
  14. Quasinormal modes for asymptotic safe black holes. Class. Quant. Grav., 29:145009, 2012.
  15. Quantum gravitational corrections to the entropy of a Schwarzschild black hole. Phys. Rev. D, 104(6):066012, 2021.
  16. Steven Weinberg. ULTRAVIOLET DIVERGENCES IN QUANTUM THEORIES OF GRAVITATION, pages 790–831. 1980.
  17. THE GENERALIZED SCHWINGER-DE WITT TECHNIQUE AND THE UNIQUE EFFECTIVE ACTION IN QUANTUM GRAVITY. Phys. Lett. B, 131:313–318, 1983.
  18. The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity. Phys. Rept., 119:1–74, 1985.
  19. Beyond the Schwinger-Dewitt Technique: Converting Loops Into Trees and In-In Currents. Nucl. Phys. B, 282:163–188, 1987.
  20. John F. Donoghue. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D, 50:3874–3888, 1994.
  21. Robert M. Wald. Black hole entropy is the Noether charge. Phys. Rev. D, 48(8):R3427–R3431, 1993.
  22. Quasinormal modes of stars and black holes. Living Rev. Rel., 2:2, 1999.
  23. Quasinormal modes of black holes and black branes. Class. Quant. Grav., 26:163001, 2009.
  24. R. A. Konoplya and A. Zhidenko. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys., 83:793–836, 2011.
  25. Late time behavior of stellar collapse and explosions: 1. Linearized perturbations. Phys. Rev. D, 49:883–889, 1994.
  26. R. A. Konoplya and A. Zhidenko. Charged scalar field instability between the event and cosmological horizons. Phys. Rev. D, 90(6):064048, 2014.
  27. Quasinormal modes and Hawking radiation of black holes in cubic gravity. Phys. Rev. D, 102(4):044023, 2020.
  28. R. A. Konoplya and C. Molina. The Ringing wormholes. Phys. Rev. D, 71:124009, 2005.
  29. Evolution of massive fields around a black hole in Horava gravity. Gen. Rel. Grav., 43:2757–2767, 2011.
  30. Mehrab Momennia. Quasinormal modes of self-dual black holes in loop quantum gravity. Phys. Rev. D, 106(2):024052, 2022.
  31. On the late-time tails of massive perturbations in spherically symmetric black holes. Eur. Phys. J. C, 82(10):931, 2022.
  32. Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav., 36:155002, 2019.
  33. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D, 35:3621, 1987.
  34. R. A. Konoplya. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D, 68:024018, 2003.
  35. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D, 96(2):024011, 2017.
  36. Scalar field evolution in Gauss-Bonnet black holes. Phys. Rev. D, 72:084006, 2005.
  37. R. A. Konoplya and A. Zhidenko. Gravitational spectrum of black holes in the Einstein-Aether theory. Phys. Lett. B, 648:236–239, 2007.
  38. R. A. Konoplya and A. Zhidenko. Perturbations and quasi-normal modes of black holes in Einstein-Aether theory. Phys. Lett. B, 644:186–191, 2007.
  39. Quasinormal modes, scattering and Hawking radiation of Kerr-Newman black holes in a magnetic field. Phys. Rev. D, 83:024031, 2011.
  40. Bounce corrections to gravitational lensing, quasinormal spectral stability, and gray-body factors of Reissner-Nordström black holes. Phys. Rev. D, 106(12):124052, 2022.
  41. Eikonal black hole ringings in generalized energy-momentum squared gravity. Phys. Rev. D, 101(6):064021, 2020.
  42. Quasinormal Modes of Bardeen Black Hole: Scalar Perturbations. Phys. Rev. D, 86:064039, 2012.
  43. Stability and quasinormal modes of black holes in conformal Weyl gravity. Phys. Lett. B, 813:136028, 2021.
  44. Quasinormal modes of black holes in a toy-model for cumulative quantum gravity. Phys. Lett. B, 795:346–350, 2019.
  45. Instabilities of wormholes and regular black holes supported by a phantom scalar field. Phys. Rev. D, 86:024028, 2012.
  46. Wormholes as black hole foils. Phys. Rev. D, 76:024016, 2007.
  47. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett., 116(17):171101, 2016. [Erratum: Phys.Rev.Lett. 117, 089902 (2016)].
  48. Echoes of Kerr-like wormholes. Phys. Rev. D, 97(2):024040, 2018.
  49. Echoes in brane worlds: ringing at a black hole–wormhole transition. Phys. Rev. D, 101(6):064004, 2020.
  50. R. A. Konoplya and A. Zhidenko. Wormholes versus black holes: quasinormal ringing at early and late times. JCAP, 12:043, 2016.
  51. R. A. Konoplya. How to tell the shape of a wormhole by its quasinormal modes. Phys. Lett. B, 784:43–49, 2018.
  52. Wormhole Potentials and Throats from Quasi-Normal Modes. Class. Quant. Grav., 35(10):105018, 2018.
  53. Wormholes without exotic matter: quasinormal modes, echoes and shadows. JCAP, 10:010, 2021.
  54. R. A. Konoplya and A. Zhidenko. Passage of radiation through wormholes of arbitrary shape. Phys. Rev. D, 81:124036, 2010.
  55. Scalar and axial quasinormal modes of massive static phantom wormholes. Phys. Rev. D, 98(4):044035, 2018.
  56. Quasinormal modes of bumblebee wormhole. Class. Quant. Grav., 36(10):105013, 2019.
  57. Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes. Eur. Phys. J. C, 80(9):850, 2020.
  58. Echoes from asymmetric wormholes and black bounce. Eur. Phys. J. C, 82(5):452, 2022.
  59. Polar modes and isospectrality of Ellis-Bronnikov wormholes. Phys. Rev. D, 107(8):084024, 2023.
  60. Odd-parity perturbations of the wormhole-like geometries and quasi-normal modes in Einstein-Æther theory. JCAP, 05:059, 2023.
  61. Arbitrarily long-lived quasinormal modes in a wormhole background. Phys. Lett. B, 802:135207, 2020.
  62. Kimet Jusufi. Correspondence between quasinormal modes and the shadow radius in a wormhole spacetime. Gen. Rel. Grav., 53(9):87, 2021.
  63. A. F. Zinhailo. Quasinormal modes of Dirac field in the Einstein–Dilaton–Gauss–Bonnet and Einstein–Weyl gravities. Eur. Phys. J. C, 79(11):912, 2019.
  64. Prosenjit Paul. Quasinormal modes of Einstein–scalar–Gauss–Bonnet black holes. Eur. Phys. J. C, 84(3):218, 2024.
  65. Scalar QNM spectra of Kerr and Reissner-Nordström revealed by eigenvalue repulsions in Kerr-Newman. JHEP, 12:101, 2023.
  66. R. A. Konoplya. Quasinormal modes of the electrically charged dilaton black hole. Gen. Rel. Grav., 34:329–335, 2002.
  67. Alexander Zhidenko. Quasinormal modes of brane-localized standard model fields in Gauss-Bonnet theory. Phys. Rev. D, 78:024007, 2008.
  68. Scalar field perturbations of the Schwarzschild black hole in the Godel universe. Phys. Rev. D, 71:084015, 2005.
  69. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D, 79(6):064016, 2009.
  70. S. V. Bolokhov. Black holes in Starobinsky-Bel-Robinson Gravity and the breakdown of quasinormal modes/null geodesics correspondence. 10 2023.
  71. R. A. Konoplya. Further clarification on quasinormal modes/circular null geodesics correspondence. Phys. Lett. B, 838:137674, 2023.
  72. R. A. Konoplya and Z. Stuchlík. Are eikonal quasinormal modes linked to the unstable circular null geodesics? Phys. Lett. B, 771:597–602, 2017.
  73. Quasinormal ringing of regular black holes in asymptotically safe gravity: the importance of overtones. JCAP, 10:091, 2022.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com