Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Fractional quantum mechanics meets quantum gravity phenomenology (2405.13544v3)

Published 22 May 2024 in gr-qc and quant-ph

Abstract: This letter extends previous findings on the modified Schr\"odinger evolution inspired by quantum gravity phenomenology. By establishing a connection between this approach and fractional quantum mechanics, we provide insights into a potential deep infrared regime of quantum gravity, characterized by the emergence of fractal dimensions, similar to behaviors observed in the deep ultraviolet regime. Additionally, we explore the experimental investigations of this regime using Bose-Einstein condensates. Notably, our analysis reveals a direct implication of this analogy: general experiments probing fractional quantum mechanics may serve as equivalent models of quantum gravity. We identify instances of nonlocal behavior in such systems, suggesting an analogous phenomenon of nonlocality in quantum gravity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Clarendon, Oxford, 2004.
  2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.
  3. Ashtekar, Abhay and Bianchi, Eugenio, “A short review of loop quantum gravity,” Rept. Prog. Phys. 84 no. 4, (2021) 042001, arXiv:2104.04394 [gr-qc].
  4. Loll, R., “Quantum Gravity from Causal Dynamical Triangulations: A Review,” Class. Quant. Grav. 37 no. 1, (2020) 013002, arXiv:1905.08669 [hep-th].
  5. Eichhorn, Astrid, “An asymptotically safe guide to quantum gravity and matter,” Front. Astron. Space Sci. 5 (2019) 47, arXiv:1810.07615 [hep-th].
  6. Amelino-Camelia, Giovanni, “Quantum-Spacetime Phenomenology,” Living Rev. Rel. 16 (2013) 5, arXiv:0806.0339 [gr-qc].
  7. Addazi, A. and others, “Quantum gravity phenomenology at the dawn of the multi-messenger era—A review,” Prog. Part. Nucl. Phys. 125 (2022) 103948, arXiv:2111.05659 [hep-ph].
  8. Mattingly, David, “Modern tests of Lorentz invariance,” Living Rev. Rel. 8 (2005) 5, arXiv:gr-qc/0502097.
  9. Alves Batista, R. and others, “White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era,” arXiv:2312.00409 [gr-qc].
  10. Wagner, Fabian and Varão, Gislaine and Lobo, Iarley P. and Bezerra, Valdir B., “Quantum-spacetime effects on nonrelativistic Schrödinger evolution,” Phys. Rev. D 108 no. 6, (2023) 066008, arXiv:2306.05205 [gr-qc].
  11. Laskin, Nikolai, “Fractional quantum mechanics and Levy paths integrals,” Phys. Lett. A 268 (2000) 298–305, arXiv:hep-ph/9910419.
  12. Laskin, Nick, “Fractional quantum mechanics,” Physical Review E 62 no. 3, (2000) 3135.
  13. G - Reference,Information and Interdisciplinary Subjects Series. World Scientific, 2018.
  14. Bosso, Pasquale and Illuminati, Fabrizio and Petruzziello, Luciano and Wagner, Fabian, “Spin couplings as witnesses of Planck scale phenomenology,” arXiv:2403.19389 [hep-th].
  15. Lukierski, Jerzy and Nowicki, Anatol and Ruegg, Henri, “New quantum Poincare algebra and k deformed field theory,” Phys. Lett. B 293 (1992) 344–352.
  16. Lukierski, Jerzy and Ruegg, Henri and Nowicki, Anatol and Tolstoi, Valerii N., “Q deformation of Poincare algebra,” Phys. Lett. B 264 (1991) 331–338.
  17. Majid, S. and Ruegg, H., “Bicrossproduct structure of kappa Poincare group and noncommutative geometry,” Phys. Lett. B 334 (1994) 348–354, arXiv:hep-th/9405107.
  18. Amelino-Camelia, Giovanni and da Silva, Malú Maira and Ronco, Michele and Cesarini, Lorenzo and Lecian, Orchidea Maria, “Spacetime-noncommutativity regime of Loop Quantum Gravity,” Phys. Rev. D 95 no. 2, (2017) 024028, arXiv:1605.00497 [gr-qc].
  19. Amelino-Camelia, G. and Ellis, John R. and Mavromatos, N. E. and Nanopoulos, Dimitri V., “Distance measurement and wave dispersion in a Liouville string approach to quantum gravity,” Int. J. Mod. Phys. A 12 (1997) 607–624, arXiv:hep-th/9605211.
  20. Ellis, John R. and Farakos, K. and Mavromatos, N. E. and Mitsou, Vasiliki A. and Nanopoulos, Dimitri V., “Astrophysical probes of the constancy of the velocity of light,” Astrophys. J. 535 (2000) 139–151, arXiv:astro-ph/9907340.
  21. Ellis, John R. and Mavromatos, N. E. and Nanopoulos, Dimitri V., “Quantum gravitational diffusion and stochastic fluctuations in the velocity of light,” Gen. Rel. Grav. 32 (2000) 127–144, arXiv:gr-qc/9904068.
  22. Horava, Petr, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79 (2009) 084008, arXiv:0901.3775 [hep-th].
  23. Horava, Petr, “Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point,” Phys. Rev. Lett. 102 (2009) 161301, arXiv:0902.3657 [hep-th].
  24. Freidel, Laurent and Livine, Etera R., “3D Quantum Gravity and Effective Noncommutative Quantum Field Theory,” Phys. Rev. Lett. 96 (2006) 221301, arXiv:hep-th/0512113.
  25. Amelino-Camelia, Giovanni and Laemmerzahl, Claus and Mercati, Flavio and Tino, Guglielmo M., “Constraining the Energy-Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms,” Phys. Rev. Lett. 103 (2009) 171302, arXiv:0911.1020 [gr-qc].
  26. Amelino-Camelia, Giovanni and Arzano, Michele and Gubitosi, Giulia and Magueijo, Joao, “Dimensional reduction in the sky,” Phys. Rev. D 87 no. 12, (2013) 123532, arXiv:1305.3153 [gr-qc].
  27. Benedetti, Dario, “Fractal properties of quantum spacetime,” Phys. Rev. Lett. 102 (2009) 111303, arXiv:0811.1396 [hep-th].
  28. Calcagni, Gianluca and Eichhorn, Astrid and Saueressig, Frank, “Probing the quantum nature of spacetime by diffusion,” Phys. Rev. D 87 no. 12, (2013) 124028, arXiv:1304.7247 [hep-th].
  29. Arzano, Michele and Gubitosi, Giulia and Magueijo, João and Amelino-Camelia, Giovanni, “Anti-de Sitter momentum space,” Phys. Rev. D 92 no. 2, (2015) 024028, arXiv:1412.2054 [gr-qc].
  30. Sotiriou, Thomas P. and Visser, Matt and Weinfurtner, Silke, “From dispersion relations to spectral dimension - and back again,” Phys. Rev. D 84 (2011) 104018, arXiv:1105.6098 [hep-th].
  31. Amelino-Camelia, Giovanni and Brighenti, Francesco and Gubitosi, Giulia and Santos, Grasiele, “Thermal dimension of quantum spacetime,” Phys. Lett. B 767 (2017) 48–52, arXiv:1602.08020 [hep-th].
  32. Lobo, I. P. and Santos, G. B., “Thermal dimensional reduction and black hole evaporation,” Phys. Lett. B 817 (2021) 136272, arXiv:2009.08556 [gr-qc].
  33. Bosso, Pasquale and Fabiano, Giuseppe and Frattulillo, Domenico and Wagner, Fabian, “Fate of Galilean relativity in minimal-length theories,” Phys. Rev. D 109 no. 4, (2024) 046016, arXiv:2307.12109 [gr-qc].
  34. Deppner, Christian and others, “Collective-Mode Enhanced Matter-Wave Optics,” Phys. Rev. Lett. 127 no. 10, (2021) 100401.
  35. Laskin, Nick, “Fractional Schrodinger equation,” Phys. Rev. E 66 (2002) 056108, arXiv:quant-ph/0206098.
  36. Stephanovich, VA and Kirichenko, EV and Dugaev, VK and Sauco, Jackie Harjani and Brito, Belén López, “Fractional quantum oscillator and disorder in the vibrational spectra,” Scientific Reports 12 no. 1, (2022) 12540.
  37. Barrow, John D., “The Area of a Rough Black Hole,” Phys. Lett. B 808 (2020) 135643, arXiv:2004.09444 [gr-qc].
  38. Wang, Li-Hua and Ma, Meng-Sen, “Barrow black holes and the minimal length,” Phys. Lett. B 831 (2022) 137181, arXiv:2205.13208 [gr-qc].
  39. Jalalzadeh, S. and da Silva, F. Rodrigues and Moniz, P. V., “Prospecting black hole thermodynamics with fractional quantum mechanics,” Eur. Phys. J. C 81 no. 7, (2021) 632, arXiv:2107.04789 [gr-qc].
  40. Moniz, P. V. and Jalalzadeh, S., “From Fractional Quantum Mechanics to Quantum Cosmology: An Overture,” Mathematics 8 no. 3, (2020) 313, arXiv:2003.01070 [gr-qc].
  41. Rasouli, S. M. M. and Costa, E. W. Oliveira and Moniz, P. V. and Jalalzadeh, S., “Inflation and fractional quantum cosmology,” Fractal Fract. 6 (2022) 655, arXiv:2210.00909 [gr-qc].
  42. Junior, P. F. da Silva and Costa, E. W. de Oliveira and Jalalzadeh, S., “Emergence of fractal cosmic space from fractional quantum gravity,” Eur. Phys. J. Plus 138 no. 9, (2023) 862, arXiv:2309.12478 [gr-qc].
  43. de Oliveira Costa, Emanuel Wallison and Jalalzadeh, Raheleh and da Silva, Junior., Pedro Felix and Rasouli, Seyed Meraj Mousavi and Jalalzadeh, Shahram, “Estimated Age of the Universe in Fractional Cosmology,” Fractal Fract. 7 (2023) 854, arXiv:2310.09464 [gr-qc].
  44. Ambjorn, J. and Jurkiewicz, J. and Loll, R., “Spectral dimension of the universe,” Phys. Rev. Lett. 95 (2005) 171301, arXiv:hep-th/0505113.
  45. Belenchia, Alessio and Benincasa, Dionigi M. T. and Marciano, Antonino and Modesto, Leonardo, “Spectral Dimension from Nonlocal Dynamics on Causal Sets,” Phys. Rev. D 93 no. 4, (2016) 044017, arXiv:1507.00330 [gr-qc].
  46. Litim, Daniel F., “Fixed points of quantum gravity,” Phys. Rev. Lett. 92 (2004) 201301, arXiv:hep-th/0312114.
  47. Modesto, Leonardo, “Fractal Structure of Loop Quantum Gravity,” Class. Quant. Grav. 26 (2009) 242002, arXiv:0812.2214 [gr-qc].
  48. Calcagni, Gianluca and Oriti, Daniele and Thürigen, Johannes, “Spectral dimension of quantum geometries,” Class. Quant. Grav. 31 (2014) 135014, arXiv:1311.3340 [hep-th].
  49. Physics of solids and liquids. Plenum Press, 1988.
  50. Liu, Shilong and Zhang, Yingwen and Malomed, Boris A. and Karimi, Ebrahim, “Experimental realisations of the fractional Schrödinger equation in the temporal domain,” Nature Commun. 14 no. 1, (2023) 222, arXiv:2208.01128 [physics.optics].
  51. Smolin, Lee, “Four principles for quantum gravity,” Fundam. Theor. Phys. 187 (2017) 427–450, arXiv:1610.01968 [gr-qc].
  52. Amelino-Camelia, Giovanni and Freidel, Laurent and Kowalski-Glikman, Jerzy and Smolin, Lee, “The principle of relative locality,” Phys. Rev. D 84 (2011) 084010, arXiv:1101.0931 [hep-th].
  53. Amelino-Camelia, Giovanni and Freidel, Laurent and Kowalski-Glikman, Jerzy and Smolin, Lee, “Relative locality: A deepening of the relativity principle,” Gen. Rel. Grav. 43 (2011) 2547–2553, arXiv:1106.0313 [hep-th].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com