Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Bridging the Gap Between Domain-specific Frameworks and Multiple Hardware Devices (2405.12491v1)

Published 21 May 2024 in cs.SE

Abstract: The rapid development of domain-specific frameworks has presented us with a significant challenge: The current approach of implementing solutions on a case-by-case basis incurs a theoretical complexity of O(M*N), thereby increasing the cost of porting applications to different hardware platforms. To address these challenges, we propose a systematic methodology that effectively bridges the gap between domain-specific frameworks and multiple hardware devices, reducing porting complexity to O(M+N). The approach utilizes multi-layer abstractions. Different domain-specific abstractions are employed to represent applications from various domains. These abstractions are then transformed into a unified abstraction, which is subsequently translated into combinations of primitive operators. Finally, these operators are mapped to multiple hardware platforms. The implemented unified framework supports deep learning, classical machine learning, and data analysis across X86, ARM, RISC-V, IoT devices, and GPU. It outperforms existing solutions like scikit-learn, hummingbird, Spark, and pandas, achieving impressive speedups: 1.1x to 3.83x on X86 servers, 1.06x to 4.33x on ARM IoT devices, 1.25x to 3.72x on RISC-V IoT devices, and 1.93x on GPU. The source code is available at https://github.com/BenchCouncil/bridger.git.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com